

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.1 (2025) pp. 1015-1031
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Design and Implementation of Hybrid Adaptive Neural Architecture for Self-

Absorption in Virtual Machines

Naga Mallikharjunarao BILLA1*, Prasadu PEDDI2, Manendra Sai DASARI3

1Research scholar, Shri Jagdishprasad Jhabarmal Tibrewala University, Vidyanagri, Jhunjhunu, Rajasthan

* Corresponding Author Email: mallikharjunarao.b@gmail.com - ORCID: 0000-0002-3362-9417

2Professor Dep of CSE & IT, Shri Jagdishprasad Jhabarmal Tibrewala University, Vidyanagri, Jhunjhunu, Rajasthan
Email: peddiprasad37@gmail.com - ORCID: 0000-0001-9717-934X

3Professor, Vignan's Institute of Engineering for Women, Visakhapatnam
Email: dmsai007@gmail.com - ORCID: 0009-0005-9561-7904

Article Info:

DOI: 10.22399/ijcesen.953

Received : 07 December 2024

Accepted : 27 January 2025

Keywords :

Virtual Machines,

Resource Management,

Neural Architecture,

Adaptive Learning,

Self-Absorption,

Dynamic Workloads.

Abstract:

This study introduces a Hybrid Adaptive Neural Architecture designed to address the

dynamic resource management challenges in Virtual Machines (VMs). Current static and

heuristic-based approaches are insufficient for adapting to real-time workload variations,

resulting in inefficiencies, latency, and resource contention. The proposed architecture

leverages neural networks, including convolutional and recurrent layers, integrated with

adaptive mechanisms such as reinforcement and transfer learning, to enable self-

absorptive capabilities in VMs. This self-adaptation allows VMs to autonomously learn

from operational data, predict resource demands, and adjust allocations in real-time,

optimizing performance and minimizing overhead. Experimental evaluation across

diverse workload patterns demonstrated the architecture's effectiveness. For burst

workloads, the proposed system achieved a 98.6% success rate, outperforming heuristic

methods (77.3%) and static allocation (64.2%). Under steady workloads, it maintained

94.9% throughput consistency, compared to 81.7% and 70.3%, respectively. The

architecture reduced ephemeral workload allocation lag to 28.7 ms, significantly

outperforming heuristic (115.6 ms) and static approaches (205.4 ms). Additionally, the

proposed system improved resource utilization, achieving 84.7% CPU efficiency and

92.4% memory efficiency, while maintaining a low latency of 48.6 ms. These results

validate the system's ability to dynamically allocate resources efficiently, adapt to

workload variability, and enhance overall VM performance. The findings set a

benchmark for neural-based resource management in virtualized environments, paving

the way for scalable, autonomous solutions in modern computing infrastructures.

1. Introduction

The rapid evolution of virtualization technologies

has revolutionized modern computing, enabling

scalable and efficient resource management in

diverse environments such as cloud data centers,

edge computing, and containerized microservices.

Virtual Machines (VMs) serve as the backbone of

these virtualized ecosystems, providing isolation,

scalability, and efficient resource utilization [1].

However, the dynamic and unpredictable nature of

workloads presents a significant challenge in

maintaining optimal performance and resource

allocation within VMs. Traditional resource

management methods, often static or heuristic-

based, struggle to adapt to these variations in real-

time, resulting in inefficiencies, performance

degradation, and potential system bottlenecks.

To address these challenges, there is a growing need

for autonomic and self-adaptive mechanisms that

enable VMs to dynamically manage their resources

in response to fluctuating workloads. Inspired by the

concept of "self-absorption" in biological and

computational systems, where entities

autonomously assimilate knowledge to adapt and

optimize, this research explores the integration of

adaptive neural architectures into VM resource

management [2]. Self-absorption in the context of

VMs refers to their capability to continuously learn

from operational data, predict resource demands,

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com
mailto:mallikharjunarao.b@gmail.com
mailto:peddiprasad37@gmail.com
mailto:dmsai007@gmail.com

Naga Mallikharjunarao BILLA, Prasadu PEDDI, Manendra Sai DASARI / IJCESEN 11-1(2025)1015-1031

1016

and adjust allocations proactively without manual

intervention. This paradigm shifts the focus from

reactive to proactive resource optimization, ensuring

higher efficiency and reduced operational overhead.

Furthermore, advances in artificial intelligence (AI),

particularly neural networks, offer a robust

foundation for developing such self-adaptive

systems. Neural architectures, including

convolutional and recurrent networks, excel in

capturing spatial and temporal patterns in complex

data, making them ideal for modeling the intricate

relationships between workload characteristics and

resource utilization [3]. When combined with

adaptive learning mechanisms like reinforcement

learning and transfer learning, these architectures

can evolve dynamically to meet the ever-changing

demands of virtualized environments.

The motivation for this research lies in bridging the

gap between static resource allocation methods and

the need for intelligent, self-adaptive systems. By

leveraging neural architectures and embedding self-

absorptive capabilities within VMs, this study aims

to enhance resource optimization, minimize latency,

and reduce resource contention, ultimately driving

the next generation of efficient and autonomous

virtualization solutions [4]. Managing the dynamic

demands of Virtual Machines (VMs) remains a

significant challenge due to the limitations of

traditional static and heuristic-based resource

allocation methods, which fail to adapt to real-time

workload variations. Adaptive learning applied in

personalized E-Learning experiences [5].

Implementing neural architecture for resource

management offers potential solutions but presents

challenges [6], including modeling complex

workload-resource relationships, incorporating

dynamic learning mechanisms like reinforcement

learning, and ensuring seamless integration with

existing virtualization infrastructures. Addressing

these gaps requires a scalable and adaptive

framework capable of optimizing resource

allocation and enhancing VM performance in

diverse and dynamic environments [7].

The primary objective of this research is to design

and implement a Hybrid Adaptive Neural

Architecture that addresses the limitations of

traditional resource management in Virtual

Machines (VMs). By leveraging neural networks

and adaptive learning mechanisms, the proposed

framework aims to optimize resource allocation,

enhance scalability, and improve the responsiveness

of VMs under dynamic workload conditions. The

system seeks to achieve self-absorptive capabilities,

enabling VMs to autonomously learn from

operational data and adapt resource allocation

strategies in real-time.

To achieve this, the research is guided by the

following specific goals:

Develop a Neural Architecture: Design a hybrid

neural network that integrates convolutional,

recurrent, and fully connected layers to capture

spatial and temporal workload patterns.

Incorporate Adaptive Mechanisms: Implement

reinforcement learning and transfer learning

techniques to enable the system to dynamically

adjust to changing workloads and environments.

Seamless Integration: Ensure compatibility with

existing VM infrastructures, including hypervisors

and container orchestration platforms, to facilitate

real-world deployment.

Performance Evaluation: Assess the architecture's

efficiency, scalability, and adaptability using

comprehensive performance metrics under diverse

workload scenarios.

The research seeks to address the following key

questions:

1. How effectively can the proposed

architecture optimize resource allocation compared

to static and heuristic-based methods?

2. To what extent can the system adapt to

unpredictable workload patterns, such as burst and

ephemeral demands, in real-time?

3. How do the incorporation of reinforcement

learning and transfer learning enhance the

adaptability and efficiency of the neural framework?

4. What are the computational and integration

overheads of the proposed system, and how can they

be minimized?

By addressing these objectives and questions, this

study aims to advance the state-of-the-art in neural-

based resource management for virtualized

environments, offering a scalable and autonomous

solution for modern computing infrastructures.

This research introduces a novel called Hybrid

Adaptive Neural Architecture that integrates

advanced neural network designs and adaptive

learning mechanisms to address the dynamic

resource management challenges in Virtual

Machines (VMs). Key contributions include the

development of a self-absorptive system capable of

autonomously learning from operational data, the

incorporation of reinforcement and transfer learning

for real-time adaptability, and the formulation of

new performance metrics for resource optimization.

A comprehensive software prototype has been

implemented and rigorously evaluated under diverse

workload scenarios, demonstrating significant

improvements in resource utilization, latency

reduction, and system throughput. These

advancements set a new benchmark in VM

management, bridging the gap between static

resource allocation and intelligent, adaptive

solutions.

Naga Mallikharjunarao BILLA, Prasadu PEDDI, Manendra Sai DASARI / IJCESEN 11-1(2025)1015-1031

1017

The paper is organized as follows: Section 2 reviews

the existing literature on virtualization and adaptive

neural architectures, identifying research gaps.

Section 3 introduces the proposed Hybrid Adaptive

Neural Architecture, detailing its conceptual

framework, system design, and adaptive

mechanisms. Section 4 outlines the implementation

details, including system specifications, datasets,

and evaluation methodologies. Section 5 presents the

experimental results, including a comparison with

baseline methods and a discussion on the system’s

effectiveness. Finally, Section 6 provides

conclusions, highlights the study's contributions, and

proposes future research directions. Each section is

structured to build upon the core argument,

showcasing the system's innovation and

effectiveness in addressing VM resource

management challenges.

1.1 Literature Review

Classical VM resource allocation strategies typically

involve provisioning computational resources

through virtual machines, which provide a high level

of isolation but can lead to performance overhead

and inefficient resource utilization [8,9]. These

approaches often rely on hypervisor-based

virtualization, which imposes overhead on CPU,

networking, and disk operations [9,10]. Hypervisors

create a layer of abstraction between the physical

hardware and virtual machines, allowing multiple

VMs to run on a single physical host. However, this

abstraction comes at a cost, as each VM requires its

own guest operating system, leading to increased

resource consumption and slower startup times

compared to more lightweight solutions [11,12].

Container technologies have emerged as a more

efficient alternative to traditional VM-based

approaches. Containers share the host operating

system kernel, resulting in lower overhead, faster

startup times, and improved resource utilization

[13,14]. Docker, a popular container platform, has

shown to have lower overhead compared to

VMware, with performance on container-based

infrastructure approaching that of non-virtualized

systems [15]. Despite their advantages, container-

based systems present new challenges in monitoring

and management due to their automated flexibility,

ephemerality, and the increasing number of

containers in a system [16,17]. Additionally, while

containers offer improved resource utilization, they

may provide less isolation compared to VMs,

potentially raising security concerns in multi-tenant

environments. In conclusion, while traditional VM-

based approaches offer strong isolation, container

technologies provide a more lightweight and

efficient solution for resource allocation and

management in cloud environments. However, both

approaches have their limitations, and the choice

between them depends on specific use cases and

requirements.

1.2 Neural Networks in System Management

Deep reinforcement learning (DRL) has emerged as

a powerful approach for system resource

management in virtualized environments. Several

studies have explored the application of DRL and

other machine learning techniques in this context. In

the field of wireless communications, a novel

resource allocation algorithm combining DRL and

unsupervised learning has been proposed for

centralized cellular networks with multiple cells,

users, and channels [18,19]. This approach uses a

Deep Deterministic Policy Gradient (DDPG) based

channel allocation network and an unsupervised

learning-based power control network to maximize

energy efficiency in dynamic environments. The

algorithm demonstrates superior performance in

terms of energy efficiency and transmit rate

compared to other methods. For vehicular networks,

DRL has been extensively studied to address various

telecommunications issues [20,21]. The integration

of DRL with deep learning has proven effective in

solving decision-making problems in large-scale

wireless networks, where traditional reinforcement

learning may struggle due to massive and complex

state and action spaces. In the context of cognitive

radio systems, a DRL-based approach has been

proposed for multi-dimensional resource allocation

[22,23] . This method uses Deep Q-Network and

Deep Recurrent Q-Network structures to design

strategies for secondary users to share spectrum and

control transmission power. The proposed approach

shows improved user rewards and reduced collisions

compared to traditional methods. While not

specifically focused on virtualization, these studies

demonstrate the potential of DRL and other machine

learning techniques for resource management in

complex, dynamic environments. The application of

these approaches to virtualized systems could

potentially lead to more efficient and adaptive

resource allocation strategies.

Despite advancements in virtualization and neural

network-based resource management, several

challenges persist. Scalability remains a key issue,

with existing methods struggling under large-scale

systems due to resource contention and

computational overheads. Transferability is another

limitation, as machine learning models often fail to

adapt across diverse virtualized environments.

Additionally, the "black box" nature of neural

networks hinders interpretability, reducing trust in

their automated decisions. Real-time adaptation to

Naga Mallikharjunarao BILLA, Prasadu PEDDI, Manendra Sai DASARI / IJCESEN 11-1(2025)1015-1031

1018

dynamic workloads poses further challenges, as

current approaches cannot consistently balance

speed, efficiency, and accuracy. Energy efficiency is

also inadequately addressed, with most solutions

prioritizing performance. Lastly, fragmented

integration of neural techniques into virtualization

platforms highlights the need for a cohesive

framework. The proposed Hybrid Adaptive Neural

Architecture aims to address these gaps by offering

a scalable, interpretable, and adaptable solution for

efficient resource management.

2. Material and Methods

2.1 Proposed Hybrid Adaptive Neural

 Architecture

Conceptual Framework

In this section, we introduce the concept of "self-

absorption" in Virtual Machines (VMs), which

refers to the system's ability to autonomously

assimilate knowledge from operational data to

enhance performance and adaptability. This self-

absorptive capability enables VMs to dynamically

adjust resources and optimize operations without

manual intervention [24].

Figure 1 represents the system's architecture, where

the Input Layer collects data on resource usage, VM

states, and workload characteristics. The Processing

Layer utilizes adaptive neural networks and learning

modules to analyze this data, extracting features and

recognizing patterns. Subsequently, the Output

Layer generates resource re-allocation instructions

and alerts based on processed information. Finally,

the Integration Layer ensures seamless

communication and implementation of these

instructions within the VM environment through

hypervisor integration, communication protocols,

and resource management modules. This self-

absorptive framework enables VMs to

autonomously adapt to changing workloads and

operational conditions, thereby enhancing efficiency

and reducing the need for manual oversight [25]. The

Hybrid Adaptive Neural Architecture is designed to

enhance the efficiency and adaptability of Virtual

Machines (VMs) by autonomously managing

resources and responding to varying workloads. This

system integrates various modules, each with

specific roles, underpinned by mathematical models

and algorithms to achieve optimal performance.

Input Modules

Resource Usage Metrics: These components

monitor real-time data on CPU utilization, memory

usage, disk I/O, and network throughput.

Mathematically, let 𝑅(𝑡) represent the resource

usage vector at time 𝑡, where: 𝑅(𝑡) =

[CPU(𝑡),Memory(𝑡), DiskIO(𝑡), Network(𝑡)].
This vector provides a quantitative measure of the

VM's performance and resource consumption at any

given time.

VM States: This module tracks the operational

status of VMs, such as running, stopped, paused, or

suspended. Define a state function 𝑆(𝑡) that maps to

discrete values indicating the VM's state: 𝑆(𝑡) ∈ {0:
Stopped, 1: Running, 2: Paused, 3: Suspended }.This

function provides a snapshot of the VM's current

activity.

Workload Characteristics: This component

analyzes the nature of tasks executed by the VM,

focusing on I/O intensity, concurrency levels, and

resource consumption patterns. Let 𝑊(𝑡) denote the

workload vector: 𝑊(𝑡) = [IO_Intensity (𝑡),
Concurrency (𝑡), Resource_Pattern (𝑡)]. This vector

helps in understanding workload demands over time.

Processing Units

Adaptive Neural Network Layers: This subsystem

comprises layers like convolutional, recurren and

fully connected layers that process input data to

extract features and adapt to changing patterns. The

neural network function 𝑓𝜃 with parameters 𝜃 can be

represented as: 𝑓𝜃(𝑥) = 𝜎(𝑊 ⋅ 𝑥 + 𝑏), where 𝑥 is

the input vector, 𝑊 and 𝑏 are weights and biases,

respectively, and 𝜎 is the activation function (e.g.,

ReLU, Sigmoid). The network adjusts 𝜃 to minimize

a loss function 𝐿, typically through backpropagation:

𝜃 ← 𝜃 − 𝜂∇𝜃𝐿, where 𝜂 is the learning rate.

Learning Modules: Incorporating techniques such

as reinforcement learning, transfer learning, and

genetic algorithms, these modules enhance the

system's adaptability. For instance, in reinforcement

learning, the objective is to maximize the expected

cumulative reward 𝑅 : max
𝜋
 𝔼[∑  ∞

𝑡=0  𝛾
𝑡𝑟𝑡] , where 𝜋

is the policy, 𝛾 is the discount factor, and 𝑟𝑡 is the

reward at time 𝑡.

Output Modules

Resource Re-allocation Instructions: Based on

processed data, this module generates commands for

dynamic resource allocation and load balancing. The

optimization problem can be formulated as:

min
𝐴(𝑡)

 𝐶(𝐴(𝑡)),subject to performance constraints,

where 𝐴(𝑡) represents the allocation strategy at time

𝑡, and 𝐶 is the cost function.

Alert Systems: This component detects anomalies

like resource overloads or performance issues.

Anomalies can be identified by evaluating the

deviation 𝐷(𝑡) of observed metrics 𝑀(𝑡) from

expected behavior 𝐸[𝑀(𝑡)] :𝐷(𝑡) = 𝑀(𝑡) −
𝐸[𝑀(𝑡)] ,If 𝐷(𝑡) exceeds a predefined threshold, an

alert is triggered.

Naga Mallikharjunarao BILLA, Prasadu PEDDI, Manendra Sai DASARI / IJCESEN 11-1(2025)1015-1031

1019

Figure 1. Block Diagram of the proposed model

Integration into VM Environment

Hypervisor Integration: Utilizing methods such as

VMBus communication and enlightened I/O, this

module facilitates interaction between the

architecture and the VM's hypervisor. The

communication can be modeled as a function 𝐻 that

translates resource allocation instructions 𝐴(𝑡) into

hypervisor actions: 𝐻: 𝐴(𝑡) → Hypervisor Actions

Communication Protocols: This subsystem

manages data exchange between modules through

API gateways and data serialization formats like

JSON or XML. The data transmission can be

represented by a function 𝑇 that ensures secure and

efficient communication: 𝑇: Data → Serialized

Format → Data

Resource Management Modules: Implementing

dynamic resource allocation and load balancing

strategies, this component oversees resource

distribution across VMs. The resource management

strategy 𝑅𝑚 aims to balance the load 𝐿 across servers

to minimize the maximum load: min
𝑅𝑚

 max
𝑖
 𝐿𝑖 , where

𝐿𝑖 is the load on server 𝑖.

Adaptive Neural Network Layer

 Architecture for Autonomous Virtual

 Machine Resource Management

Input Layer

The Input Layer acts as the gateway for data entering

the neural network, processing normalized features

derived from Virtual Machine (VM) operations. It

captures key system attributes, including Resource

Usage Metrics (𝑅(𝑡)), which represent real-time

measurements of CPU, memory, disk I/O, and

network utilization, providing insights into

performance and resource consumption. VM States

Naga Mallikharjunarao BILLA, Prasadu PEDDI, Manendra Sai DASARI / IJCESEN 11-1(2025)1015-1031

1020

(𝑆(𝑡)) encode the current operational status of the

VM (e.g., Running = 1, Paused = 2, Suspended =

3) as discrete values. Workload Characteristics

(𝑊(𝑡)) describe the nature of tasks, including I/O

intensity and concurrency levels (𝑊(𝑡) =
[IO_Intensity (𝑡), Concurrency (𝑡)]). These

attributes combine into a single input vector, 𝐱𝑡 =
[𝑅(𝑡), 𝑆(𝑡),𝑊(𝑡)], encapsulating a snapshot of the

VM's state at time 𝑡 and serving as the foundational

input for subsequent layers of the network [26].

Hidden layer

The hidden layers in the architecture are designed to

progressively extract features, model patterns, and

learn complex relationships from input data. These

layers include Convolutional Layers, which extract

spatial patterns from resource usage metrics and

workload characteristics by applying filters to detect

localized patterns like peak resource usage or

workload spikes. Mathematically, the output of a

convolutional layer at location 𝑖, 𝑗 is represented as

𝑧𝑖𝑗
(𝑙)

= 𝜎 (∑𝑘=1
𝐾  𝑤𝑘

(𝑙)
⋅ 𝑥𝑖+𝑘−1,𝑗+𝑘−1

(𝑙−1)
+ 𝑏(𝑙)), where

𝑤𝑘
(𝑙)

 are the filter weights and 𝜎 is the activation

function (e.g., ReLU). Recurrent Layers (e.g.,

LSTM) capture temporal dependencies in time-

series data, such as resource utilization trends, by

maintaining memory of sequential relationships. The

hidden state at time 𝑡 is computed as ℎ𝑡 =
𝜎(𝑊ℎ ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ), where 𝑊ℎ is the weight

matrix for the input and hidden states. Finally, Fully

Connected Layers aggregate features from the

convolutional and recurrent layers, producing high-

level representations through 𝑦 = 𝜎(𝑊 ⋅ ℎ + 𝑏),

where 𝑊 and 𝑏 are the weights and biases. Together,

these hidden layers form the backbone of the neural

network, enabling it to learn both spatial and

temporal relationships in the data[27].

Adaptive mechanism

The Adaptive Neural Network Layer incorporates

mechanisms that dynamically adjust its learning

process and decision-making capabilities to

optimize performance. Dynamic Learning Rate

ensures faster convergence and adaptability to

changing environments by adjusting the learning

rate 𝜂𝑡 dynamically, modeled as 𝜂𝑡 =
𝜂0

1+𝜆𝑡
, where 𝜂0

is the initial learning rate and 𝜆 is the decay factor.

Reinforcement Learning enables the system to learn

optimal resource allocation strategies through trial-

and-error interactions, maximizing cumulative

rewards with the objective 𝜋∗ =

argmax𝜋  𝔼[∑𝑡=0
∞  𝛾𝑡𝑟𝑡], where 𝜋 is the policy

function, 𝑟𝑡 is the reward at time 𝑡, and 𝛾 is the

discount factor. Transfer Learning accelerates

learning in new VM environments by leveraging

pretrained models, adjusting weights as

𝑊fine-tuned = 𝑊pretrained + Δ𝑊, where Δ𝑊

represents fine-tuned modifications. Together, these

mechanisms enhance the neural network's

adaptability, learning efficiency, and decision-

making capabilities in dynamic VM environments

[28].

Output Layer

The Output Layer generates actionable insights for

resource management and anomaly detection:

Resource Allocation Predictions (�̂�(𝒕)) :

Determines optimal resource allocation strategies:

�̂�(𝑡) = argmin𝐴𝐶(𝐴)
Where 𝐶(𝐴) is the cost function for resource

allocation.

Anomaly Detection and Alerts (�̂�(𝒕)) : Identifies

deviations in resource usage patterns: Δ𝑅(𝑡) =
𝑅(𝑡) − 𝜇𝑅 > 𝛿 Where 𝜇𝑅 is the mean resource usage

and 𝛿 is the anomaly threshold. The Adaptive Neural

Network Layer is a multi-faceted system that

combines advanced neural network architectures

with adaptive learning mechanisms. Its core design

enables it to:

1. Process complex input data from VM

environments.

2. Extract meaningful patterns through

convolutional, recurrent, and fully connected layers.

3. Dynamically adapt to changing

environments using reinforcement learning and

transfer learning.

This figure 2 ensures efficient resource management

and system optimization, making it a vital

component in autonomous Virtual Machine

environments.

Incorporating Adaptive Mechanisms

To enhance the adaptability of the system, the

proposed architecture integrates reinforcement

learning and transfer learning techniques, enabling

dynamic adjustments to changing workloads and

operational environments. These mechanisms allow

the neural network to refine its resource allocation

strategies in real-time and improve performance

across varying conditions [29].

Reinforcement Learning (RL) Framework: The

reinforcement learning module is designed to

optimize resource allocation by modeling the system

as a Markov Decision Process (MDP), defined by the

tuple (𝑆, 𝐴, 𝑃, 𝑅):

 𝑆 : The set of states representing the VM's

operational conditions, such as workload intensity

and resource availability.

Naga Mallikharjunarao BILLA, Prasadu PEDDI, Manendra Sai DASARI / IJCESEN 11-1(2025)1015-1031

1021

 𝐴 : The set of possible actions, including

resource allocation adjustments.

Figure 2. Adaptive Neural Network Layer Architecture

 𝑃(𝑠′ ∣ 𝑠, 𝑎) : The state transition

probabilities, indicating the likelihood of moving to

a new state 𝑠′ given the current state 𝑠 and action 𝑎.

 𝑅(𝑠, 𝑎) : The reward function, representing

the system's performance improvement (e.g.,

reduced latency or increased efficiency) after

executing action 𝑎 in state 𝑠.

The RL agent learns an optimal policy 𝜋∗(𝑎 ∣ 𝑠) to

maximize the expected cumulative reward:

 𝜋∗ = argmax
𝜋
 𝔼[∑  ∞

𝑡=0  𝛾
𝑡𝑅(𝑠𝑡 , 𝑎𝑡)] (1)

where 𝛾 ∈ [0,1] is the discount factor that prioritizes

immediate rewards over long-term gains.

Transfer Learning (TL) Framework: The transfer

learning component accelerates the learning process

in new environments by leveraging knowledge from

pretrained models. Let 𝑊pretrained denote the weights

of a model trained in a source environment. These

weights are fine-tuned for a target environment by

minimizing the loss function 𝐿 using gradient-based

optimization:

𝑊fine-tuned = 𝑊pretrained − 𝜂∇𝑊𝐿(𝑊) (2)

where 𝜂 is the learning rate, and ∇𝑊𝐿(𝑊) is the

gradient of the loss function with respect to the

weights. This approach reduces the computational

burden and enables rapid adaptation to new

workload patterns [30].

Integration of Adaptive Mechanisms: The RL and

TL modules operate in tandem, where transfer

learning provides an efficient initialization for

reinforcement learning agents in new environments.

This integration improves convergence speed and

ensures robust performance under diverse and

dynamic conditions. By incorporating these adaptive

Naga Mallikharjunarao BILLA, Prasadu PEDDI, Manendra Sai DASARI / IJCESEN 11-1(2025)1015-1031

1022

mechanisms, the architecture achieves real-time

resource

optimization, minimizing latency and maximizing

resource utilization across virtualized systems.

2.2 Experiments and Evaluation

The implementation of the proposed system for

autonomous resource management in Virtual

Machines (VMs) was carried out with careful

consideration of system specifications, data

requirements, and robust deployment strategies.

This section elaborates on the development

environment, system architecture, datasets,

challenges encountered, and testing methodologies.

System Specifications: The system was

implemented using state-of-the-art programming

frameworks, virtualization tools, and high-

performance hardware to ensure scalability and

flexibility. PyTorch was utilized for developing and

training the adaptive neural network due to its

dynamic computational graph capabilities, while

TensorFlow/Keras facilitated experimentation with

alternative architectures via its high-level APIs. The

deployment environment included VMware vSphere

and Microsoft Hyper-V for simulating various VM

platforms, alongside Docker containers for isolating

deployment environments and Kubernetes for

orchestrating operations across multiple nodes. The

hardware configuration comprised Intel Xeon E5-

2683 v4 processors (16 cores, 2.10 GHz), 128 GB

DDR4 RAM, 1 TB SSD storage for fast I/O, and

NVIDIA Tesla V100 GPUs (32 GB VRAM) to

accelerate training and inference processes [31].

Dataset Used

The system was trained and validated using a

combination of synthetic and real-world datasets to

ensure robustness across diverse scenarios.

Synthetic data was generated using workload

simulators such as Stress-ng and FIO, simulating

VM behaviors under varying resource loads,

including CPUintensive, memory-intensive, and

I/O-intensive operations. Real-world data was

collected from VM logs and monitoring tools like

Prometheus and VMware vCenter, capturing metrics

such as CPU utilization, memory consumption, disk

I/O, and network throughput. The dataset consisted

of 500,000 samples of time-series data spanning six

months. Data preprocessing involved scaling

features to a range of [0,1] using min-max

normalization (𝑥′ =
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
) and applying

Principal Component Analysis (PCA) to reduce

dimensionality while retaining 95% of variance. The

dataset was then split into training (70%), validation

(20%), and testing (10%) subsets to ensure effective

model evaluation and performance optimization

[32].

Evaluation Metrics

The proposed Hybrid Adaptive Neural Architecture

for Self-Absorption in Virtual Machines (VMs) is

rigorously evaluated using a set of well-defined

performance metrics to assess its effectiveness,

efficiency, and adaptability. The evaluation

framework incorporates performance criteria,

accuracy measures, convergence speed, and resource

overhead to comprehensively analyze the system’s

capabilities in real-world virtualization scenarios.

Below, we outline these metrics with precise

mathematical formulations [33].

Performance Criteria

The architecture's impact on resource utilization and

responsiveness is quantified through the following

metrics:

CPU Utilization: The percentage of CPU resources

actively used by VM is a critical measure of

efficiency. Excessive idle cycles or overutilization

adversely affect performance [17].

𝑈CPU =
𝑇CPU= Used

𝑇CPU Total × 100 (3)

Where:

𝑇CPU_Used : Total time the CPU is actively

processing tasks.

𝑇CPU_Total : Total available CPU time.

Memory Usage: Efficient memory allocation

ensures workloads are adequately supported without

unnecessary overprovisioning [18].

 𝑈Mem =
𝑀Used

𝑀Total
× 100 (4)

Where:

𝑀Used : Memory consumed by active workloads.

𝑀Total : Total memory available to the VM.

Latency: Latency measures the total time elapsed

between data ingestion and the execution of resource

allocation decisions, reflecting system

responsiveness [19].

 𝐿 = 𝑇End − 𝑇Start (5)

Where:

𝑇End : Time when the decision is executed.

Naga Mallikharjunarao BILLA, Prasadu PEDDI, Manendra Sai DASARI / IJCESEN 11-1(2025)1015-1031

1023

𝑇Start : Time when data is received.

Throughput: Throughput represents the number of

resource allocation requests processed per unit time,

highlighting the system's ability to manage

concurrent workloads [20].

 𝑇Throughput =
𝑁

Requests

𝑇
Processing

 (6)

Where:

𝑁Requests: Total number of requests processed.

𝑇Processing: Total time taken for processing.

Accuracy and Convergence Speed

The effectiveness of the neural network is evaluated

based on its prediction accuracy and the speed at

which it achieves optimal performance:

Accuracy: Accuracy measures the system's ability

to correctly allocate resources or detect anomalies,

calculated as:

 𝐴 =
𝑁

Correct

𝑁
Total

× 100 (7)

Where:

𝑁Correct : Number of correct predictions.

𝑁Total : Total predictions made by the system.

Convergence Speed: Convergence speed evaluates

the time and number of iterations required for the

neural network to minimize the loss function 𝐿(𝜃) :

 𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃𝐿(𝜃𝑡) (8)

Where:

𝜂 : Learning rate.

∇𝜃𝐿(𝜃𝑡) : Gradient of the loss function at iteration 𝑡.
Convergence is achieved when: |𝐿(𝜃𝑡+1) −
𝐿(𝜃𝑡)| < 𝜖

Where 𝜖 is a small predefined threshold.

Resource Overhead

The architecture’s resource efficiency is quantified

through computational, memory, and network

overheads to ensure minimal disruption to system

performance:

Computational Overhead: The percentage of CPU

or GPU resources consumed by the adaptive system

relative to the total capacity is measured as:

 𝐶Overhead =
𝑇

System_Used

𝑇
System_Total

× 100 (9)

Where:

𝑇System_Used : Time spent by the system on

processing tasks.

𝑇System_Total Total available computational time.

Memory Overhead: Additional memory

consumption by the adaptive system is quantified as:

 𝑀Overhead =
𝑀

System_Used

𝑀
System_Total

× 100 (10)

Where:

𝑀System_Used : Memory consumed by the system.

𝑀System_Total : Total available memory.

Network Overhead: The data transmission

bandwidth consumed for communication between

the VMs, hypervisor, and adaptive system is

evaluated as:

 𝑁Overhead =
𝐷

Transferred

𝑇
Duration

 (11)

Where:

𝐷Transferred : Total data transmitted (in MB).

𝑇Duration : Time duration of the transmission.

3. Results and Discussions

3.1 Benchmarking Scenarios

In evaluating the performance of the Hybrid

Adaptive Neural Architecture for Self-Absorption in

Virtual Machines (VMs)[34], we benchmarked it

against traditional static[35] and heuristic-based

resource allocation methods[36]. The results,

presented in Table 1, demonstrate the superior

adaptability and efficiency of our proposed system

across various metrics. The system's adaptability

was evaluated under three workload scenarios: burst

workloads, characterized by sudden, unpredictable

spikes in resource demands; steady workloads,

representing consistent and predictable resource

usage; and ephemeral workloads, involving short-

lived, high-intensity tasks [34]. In burst scenarios,

the proposed system adjusted resource allocations

within an average of 9.4 seconds, avoiding resource

saturation in 98.6% of cases, whereas heuristic

methods experienced a 22.7% failure rate, and static

allocation methods failed 35.8% of the time. Under

steady workloads, the architecture maintained

throughput consistency at 94.9%, with an average

resource utilization of 85.2%, outperforming

heuristic methods, which achieved 81.7%

consistency, and static allocation, which lagged at

70.3%. For ephemeral workloads, resource

Naga Mallikharjunarao BILLA, Prasadu PEDDI, Manendra Sai DASARI / IJCESEN 11-1(2025)1015-1031

1024

allocation lag was minimized to an average of 28.7

milliseconds, significantly outperforming heuristic

methods at 115.6 milliseconds and static allocation

at 205.4 milliseconds.

Table 1. Performance Comparison of Resource Allocation Methods

Metric Proposed Architecture Static Allocation [35] Heuristic Method [36]

CPU Utilization (%) 84.7 65.1 72.3

Memory Efficiency (%) 92.4 69.5 77.8

Latency (ms) 48.6 203.2 118.4

Burst Workload Success Rate (%) 98.6 64.2 77.3

Throughput Consistency (%) 94.9 70.3 81.7

Ephemeral Workload Allocation Lag (ms) 28.7 205.4 115.6

Figure 3. Comparison of Percentage-Based Metrics for the Proposed Model

The data in Table 1 highlights the proposed

architecture's ability to dynamically allocate

resources more effectively than traditional methods,

resulting in higher CPU utilization and memory

efficiency, lower latency, and improved

performance under varying workload conditions.

Static Allocation: This method involves assigning

fixed resources to VMs without adapting to

workload changes, leading to potential

inefficiencies. For instance, in a study on energy-

aware resource allocation heuristics for VM

scheduling, static allocation was found to be less

efficient in dynamic environments [35].

Heuristic Method: Heuristic-based approaches use

predefined rules to adjust resources based on current

demands. While more flexible than static methods,

they may not fully optimize resource utilization.

Research integrating heuristic and machine-learning

methods for VM allocation has shown

improvements over static methods but still faces

limitations in large-scale data center scenarios [36].

Figure 3 presents a comparative analysis of the

percentage-based performance metrics for the

Proposed Hybrid Adaptive Neural Architecture,

Static Allocation, and Heuristic Methods. The

metrics include [36-38]:

CPU Utilization: Reflecting the efficiency of

resource utilization across different allocation

strategies.

Memory Efficiency: Highlighting the effectiveness

in memory allocation under variable workloads.

Burst Workload Success Rate: Measuring the

system's capability to handle sudden spikes in

resource demands without saturation.

Naga Mallikharjunarao BILLA, Prasadu PEDDI, Manendra Sai DASARI / IJCESEN 11-1(2025)1015-1031

1025

Throughput Consistency: Evaluating the stability

of resource allocation over steady workload

conditions.

The Proposed Architecture demonstrates

significantly higher performance across all metrics,

achieving 84.7% CPU utilization, 92.4% memory

efficiency, 98.6% success rate for burst workloads,

and 94.9% throughput consistency. In contrast, static

allocation consistently underperformed, while

heuristic methods offered intermediate performance

but failed to match the adaptability of the proposed

system [39].

Figure 4 compares the latency-based metrics of

Latency (time to execute resource allocation

decisions) [40,41] and Ephemeral Workload

Allocation Lag (response time to short-lived, high-

intensity tasks) [42,43]. The results clearly highlight:

The Proposed Architecture achieved an average

latency of 48.6 milliseconds, outperforming

heuristic methods (118.4 ms) and static allocation

(203.2 ms).

For Ephemeral Workload Allocation Lag, the

proposed system responded in 28.7 milliseconds,

significantly faster than heuristic methods (115.6

ms) and static allocation (205.4 ms).

The Proposed Architecture excels in minimizing

response times, demonstrating its ability to handle

real-time workloads with higher efficiency and

reduced bottlenecks compared to traditional

methods [44].

Figure 4. Comparison of Latency-Based Metrics

Table 2. Hybrid Adaptive Neural Architecture for Self-Absorption in Virtual Machines (VMs)

Metric Proposed

Architecture

Heuristic

Methods

Static

Allocation

Analysis and Observations

Burst Workload

Success Rate (%)

98.6 77.3 64.2 Demonstrated superior adaptability, avoiding

resource saturation in most cases.

Steady Workload

Throughput

Consistency (%)

94.9 81.7 70.3 Maintained high consistency over extended

periods, outperforming both baseline methods.

Ephemeral Workload

Allocation Lag (ms)

28.7 115.6 205.4 Significantly reduced lag, enabling fast

responses to short-lived, high-intensity

workloads.

Average CPU

Utilization (%)

84.7 72.3 65.1 Efficiently balanced resource usage, reducing

idle times and avoiding overutilization.

Memory Efficiency

(%)

92.4 77.8 69.5 Optimized memory usage, particularly under

variable workloads.

Latency (ms) 48.6 118.4 203.2 Achieved low decision latency, ensuring real-

time responsiveness to changing workload

demands.

Naga Mallikharjunarao BILLA, Prasadu PEDDI, Manendra Sai DASARI / IJCESEN 11-1(2025)1015-1031

1026

System Bottlenecks Minimal Moderate High Minor delays in extreme workloads attributed

to network synchronization; significantly

fewer bottlenecks overall.

3.2 Results Analysis

The following table summarizes the results of the

Hybrid Adaptive Neural Architecture for Self-

Absorption in Virtual Machines (VMs),[45-47].

benchmarked against traditional static and heuristic-

based methods. It highlights key performance

metrics under different workload patterns, as well as

the system’s success rates, latencies, and identified

bottlenecks [48,49]. The research explores the use of

sentiment analysis on student interactions, such as

online discussions, assignments, and feedback, to

assess the emotional tone of student engagement

[50]. The Proposed Architecture consistently

outperformed heuristic and static methods across all

metrics, with notable improvements in success rates,

throughput consistency, and latency[51,52]. The

system demonstrated robustness in handling burst

and ephemeral workloads, where adaptability and

quick responses are critical. Minor bottlenecks were

observed under extreme workloads, primarily due to

network synchronization delays, but these were

significantly less pronounced compared to baseline

methods [53]. Figure 5 presents the results for

metrics such as Burst Workload Success Rate,

Steady Workload Throughput Consistency, Average

CPU Utilization, and Memory Efficiency [54]. The

proposed architecture consistently outperformed the

baseline approaches:

Burst Workload Success Rate: The proposed

system achieved 98.6%, significantly higher than

heuristic methods (77.3%) and static allocation

(64.2%), demonstrating superior adaptability to

unpredictable resource spikes.

Steady Workload Throughput Consistency: With

a consistency of 94.9%, the proposed architecture

maintained reliable performance over prolonged

steady-state conditions, outperforming heuristic

methods (81.7%) and static allocation (70.3%).

Average CPU Utilization: Efficient resource

utilization was evident, with the proposed

architecture achieving 84.7%, compared to 72.3%

for heuristic methods and 65.1% for static allocation.

Memory Efficiency: Optimized memory usage was

evident, with the proposed architecture achieving

92.4%, surpassing heuristic methods (77.8%) and

static allocation (69.5%). These results validate the

proposed system’s ability to optimize resource usage

and maintain high performance under varying

workload patterns [55]. This table 2 provides a

concise, quantitative summary of the architecture's

performance, underscoring its effectiveness in

enhancing resource management in dynamic VM

environments. Figure 6 evaluates the Ephemeral

Workload Allocation Lag and Latency, key

indicators of the system's responsiveness:

Ephemeral Workload Allocation Lag: The

proposed architecture minimized allocation delays

to an average of 28.7 ms, compared to 115.6 ms for

heuristic methods and 205.4 ms for static allocation.

This highlights the system’s ability to respond

swiftly to short-lived, high-intensity workloads [56].

Latency: The decision latency for the proposed

system was 48.6 ms, significantly lower than

heuristic methods (118.4 ms) and static allocation

(203.2 ms), ensuring real-time responsiveness to

changing resource demands. The performance of the

Hybrid Adaptive Neural Architecture was evaluated

using key metrics categorized into percentage-based

and latency-based measures. The findings are

illustrated in Figure 5 and Figure 6, highlighting the

architecture’s effectiveness compared to heuristic

methods and static allocation strategies.

3.3 Discussion on “Self-Absorption”

 Effectiveness

The "self-absorption" mechanism embedded in the

proposed Hybrid Adaptive Neural Architecture

demonstrates a robust capability for autonomous

learning and adaptation over time. By leveraging

continuous feedback loops, the system dynamically

refines its resource allocation strategies based on

real-time operational data, reducing the reliance on

manual interventions. This adaptive learning enables

architecture to anticipate workload demands and

optimize resource utilization efficiently. The

correlation between the system's performance

improvements and its autonomous feedback loops is

particularly evident in its ability to adjust to diverse

workload patterns. For example, under burst

workloads, the system effectively absorbs

knowledge from sudden spikes, recalibrating

resources to prevent saturation. Similarly, the

mechanism’s temporal learning capabilities ensure

seamless transitions during ephemeral workloads,

minimizing allocation delays. The feedback-driven

refinement process not only enhances decision

accuracy but also reduces system bottlenecks,

ensuring sustained performance under dynamic VM

environments. This discussion highlights the pivotal

role of the self-absorption mechanism in enabling

the system to evolve, adapt, and achieve higher

efficiency, demonstrating its potential as a

foundational component for next-generation

virtualized resource management frameworks.

Naga Mallikharjunarao BILLA, Prasadu PEDDI, Manendra Sai DASARI / IJCESEN 11-1(2025)1015-1031

1027

4. Conclusions

The proposed Hybrid Adaptive Neural Architecture

effectively achieves self-absorption in Virtual

Machines (VMs), enabling autonomous

Figure 5. Comparison of Percentage-Based Metrics for the Proposed Model of Self-Absorption in Virtual Machines

(VMs)

Figure 6. Comparison of Latency-Based Metrics for the Proposed Model of Self-Absorption in Virtual Machines (VMs)

resource management by dynamically adapting to

workload variations. This advancement holds

significant potential for improving resource

efficiency and performance in cloud and edge

Naga Mallikharjunarao BILLA, Prasadu PEDDI, Manendra Sai DASARI / IJCESEN 11-1(2025)1015-1031

1028

computing environments. However, studying is not

without limitations. Scalability challenges may arise

in large-scale deployments, and the experimental

conditions, while robust, may not fully capture all

real-world complexities. Additionally,

generalizability across diverse virtualization

platforms requires further investigation. Future

research directions include extending the

architecture to multi-cloud and large-scale

environments, integrating advanced AI-driven

policy modules, and incorporating real-time

reinforcement learning for more precise decision-

making. Dynamic routing strategies and enhanced

interpretability mechanisms are also recommended

to further optimize performance and adaptability in

complex virtualized systems.

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or

ethical restrictions.

References

[1] Jella, K., Kishore, B. (2015). A Study on Dynamic

Resource Allocation using Virtual Machines for

IAAS. International Journal of Computer

Engineering in Research Trends. 2(11):761–764.

[2] Maria González, Lars Svensson, Bhavsingh. (2024).

Adaptive Resource Management in IoT-Fog-Cloud

Networks via Hybrid Machine Learning

Models. International Journal of Computer

Engineering in Research Trends. 11(8):1–11.

https://doi.org/10.22362/ijcert/2024/v11/i8/v11i801

[3] P, L., V, V., M, M., Swetha, P., J, A., M, B. (2024).

AquaPredict: Deploying Data-Driven Aquatic Models

for Optimizing Sustainable Agriculture Practices.

International Journal of Electrical and Electronics

Engineering. 11(6):76–90.

https://doi.org/10.14445/23488379/ijeeev11i6p109

[4] K, V. R., B, R., Changala, R., T, A. S. S., Kalangi, P.

K., M, B. (2024). Optimizing 6G Network Slicing

with the EvoNetSlice Model for Dynamic Resource

Allocation and Real-Time QoS Management.

International Research Journal of Multidisciplinary

Technovation. 325–340.

https://doi.org/10.54392/irjmt24324

[5] R.T. Subhalakshmi, S. Geetha, S. Dhanabal, & M.

Balakrishnan. (2025). ALPOA: Adaptive Learning

Path Optimization Algorithm for Personalized E-

Learning Experiences. International Journal of

Computational and Experimental Science and

Engineering, 11(1).

https://doi.org/10.22399/ijcesen.910

[6] Kumar Reddy, K. V., Madhava Rao, C., Archana, M.,

Begum, Z., M.Bhavsingh, Ravikumar, H. (2024).

VisiDriveNet: A Deep Learning Model for Enhanced

Autonomous Navigation in Urban Environments.

2024 8th International Conference on I-SMAC (IoT in

Social, Mobile, Analytics and Cloud) (I-SMAC).

1294–1300.

https://doi.org/10.1109/ismac61858.2024.10714627

[7] Dasari, K., Ali, M. A., N.B, S., Reddy, K. D.,

Bhavsingh, M., Samunnisa, K. (2024). A Novel IoT-

Driven Model for Real-Time Urban Wildlife Health

and Safety Monitoring in Smart Cities. 2024 8th

International Conference on I-SMAC (IoT in Social,

Mobile, Analytics and Cloud) (I-SMAC). 122–129.

https://doi.org/10.1109/i-smac61858.2024.10714601

[8] Ibrahim Khalil, Longfei Wu. (2024). Neuromorphic

Edge Computing: Bridging the Gap Between Energy-

Efficient AI and Real-Time Decision

Making. International Journal of Computer

Engineering in Research Trends. 11(9):11–21.

https://doi.org/10.22362/ijcert/2024/v11/i9/v11i903

[9] Venkata Ramana, K., Yadav, G. H. K., Basha, P. H.,

Sambasivarao, L. V., Rao, Y. V. B. K., Bhavsingh, M.

(2024). Secure and efficient energy trading using

homomorphic encryption on the Green Trade

platform. International Journal of Intelligent Systems

and Applications in Engineering. 12(1s):345–360.

[10] G. Venkateshwarlu, Samala Akhila, Veldandi

Kavyasree, Sivarathri Vishnu, Vemula Siva prasad.

(2024). Enhanced Text Classification Using Random

Forest: Comparative Analysis and Insights on

Performance and Efficiency. International Journal of

Computer Engineering in Research Trends. 11(1s):1–

8.

https://doi.org/10.22362/ijcert/2024/v11/i1/v11i1s01

[11] B.Srishailam, Parvatham Swetha, S.Madhuri, P.

Ganesh, SK. Muneeruddin. (2024). Comparative

Analysis of Feature Extraction Techniques and

Machine Learning Models for Twitter Text

Classification. International Journal of Computer

Engineering in Research Trends. 11(1s):46–52.

https://doi.org/10.22362/ijcert/2024/v11/i1/v11i1s07

[12] K. Suresh, K. Thapan, K. Vamshi Reddy, K.

Polaiah, T. Abhinav Surya. (2024). A Hybrid

Framework for Detecting Automated Spammers on

Twitter: Integrating Machine Learning and Heuristic

Approaches. International Journal of Computer

Engineering in Research Trends. 11(1s):53–60.

https://doi.org/10.22362/ijcert/2024/v11/i1/v11i1s08

https://doi.org/10.22362/ijcert/2024/v11/i8/v11i801
https://doi.org/10.1109/i-smac61858.2024.10714601
https://doi.org/10.22362/ijcert/2024/v11/i1/v11i1s01
https://doi.org/10.22362/ijcert/2024/v11/i1/v11i1s07
https://doi.org/10.22362/ijcert/2024/v11/i1/v11i1s08

Naga Mallikharjunarao BILLA, Prasadu PEDDI, Manendra Sai DASARI / IJCESEN 11-1(2025)1015-1031

1029

[13] Archana, M., Kavitha, S., Vathsala, A. V. (2023).

Auto deep learning-based automated surveillance

technique to recognize the activities in the cyber

physical system. International Journal on Recent and

Innovation Trends in Computing and Communication.

11(2). https://doi.org/10.17762/ijritcc.v11i2.6111

[14] S. Mounika, Kollar Gayatri, Bandi Mahesh,

Bathini Srikumar, Bojjam Ganesh Reddy. (2024).

Heart Disease Prediction Using Machine Learning

with Recursive Feature Elimination for Optimized

Performance. International Journal of Computer

Engineering in Research Trends. 11(1s):61–67.

https://doi.org/10.22362/ijcert/2024/v11/i1/v11i1s09

[15] Swathi, V. N. V. L. S., Nakka, V., Farhana, S.,

Archana, M., Reddy, K. D., Vathsala, A. V. (2024).

Dynamic framework for optimized cloud service

selection using adaptive weighting and enhanced

TOPSIS. In 2024 5th International Conference for

Emerging Technology (INCET). IEEE.

https://doi.org/10.1109/INCET61516.2024.10593444

[16] Canosa-Reyes, R. M., Babenko, M., Drozdov, A.

Y., Medrano-Jaimes, F., Cortés-Mendoza, J. M.,

Lozano-Rizk, J. E., Avetisyan, A., Pulido-Gaytan, B.,

Castro Barrera, H. E., Tchernykh, A., Concepción-

Morales, E. R., Barrios-Hernandez, C. J., Rivera-

Rodriguez, R. (2022). Dynamic performance-Energy

tradeoff consolidation with contention-aware resource

provisioning in containerized clouds. PloS One. 17(1),

e0261856.

[17] Akshaya Kumar Mandal, Pedro Machado, Eneko

Osaba. (2025). Applying Coral Reef Restoration

Algorithm for Quantum Computing in Genomic Data

Analysis. International Journal of Computer

Engineering in Research Trends. 12(1):20–28.

https://doi.org/10.22362/ijcert/2025/v12/i1/v12i102

[18] M Bhavsingh, Addepalli Lavanya, K Samunnisa.

(2024). Sustainable Computing Architectures for

Ethical AI: Balancing Performance, Energy

Efficiency, and Equity. International Journal of

Computer Engineering in Research Trends.

11(10):24–32.

https://doi.org/10.22362/ijcert/2024/v11/i10/v11i100

3

[19] Archana, M., Kavitha, S., Vathsala, A. (2024).

Human action recognition using key point detection

and machine learning. In 2024 4th International

Conference on Pervasive Computing and Social

Networking (ICPCSN). IEEE.

https://doi.org/10.1109/ICPCSN62568.2024.00070

[20] Sheganaku, G., Schulte, S., Waibel, P., Weber, I.

(2022). Cost-efficient auto-scaling of container-based

elastic processes. Future Generation Computer

Systems. 138:296–312.

https://doi.org/10.1016/j.future.2022.09.001

[21] Correia, M., Oliveira, W., Cecílio, J. (2023).

Monintainer: An orchestration-independent extensible

container-based monitoring solution for large clusters.

Journal of Systems Architecture. 145, 103035.

https://doi.org/10.1016/j.sysarc.2023.103035.

[22] Reddy, K. V. K., Rao, C. M., Archana, M.,

Begum, Z., Bhavsingh, M., Ravikumar, H. (2024).

VisiDriveNet: A deep learning model for enhanced

autonomous navigation in urban environments. In

2024 8th International Conference on I-SMAC (IoT in

Social, Mobile, Analytics and Cloud) (I-SMAC).

IEEE.

https://doi.org/10.1109/ISMAC61858.2024.1071462

7.

[23] Shirinbab, S., Lundberg, L., Casalicchio, E.

(2020). Performance evaluation of containers and

virtual machines when running Cassandra workload

concurrently. Concurrency and Computation:

Practice and Experience. 32(17).

https://doi.org/10.1002/cpe.5693

[24] Sun, M., Jin, Y., Mei, E., Wang, S. (2023). Joint

DDPG and Unsupervised Learning for Channel

Allocation and Power Control in Centralized Wireless

Cellular Networks. IEEE Access. 11:42191–42203.

https://doi.org/10.1109/access.2023.3270316

[25] Mekrache, A., Bradai, A., Moulay, E., Dawaliby,

S. (2021). Deep reinforcement learning techniques for

vehicular networks: Recent advances and future trends

towards 6G. Vehicular Communications. 33,100398.

https://doi.org/10.1016/j.vehcom.2021.100398

[26] Liu, S., Yang, F., Zhang, C., Song, J., Pan, C.

(2023). Dynamic Spectrum Sharing Based on Deep

Reinforcement Learning in Mobile Communication

Systems. Sensors (Basel, Switzerland), 23(5):2622.

https://doi.org/10.3390/s23052622

[27] Divyansh Awasthi, Zeinab Elngar, Jeyarani

Selvarajan. (2025). Implementing Bioluminescent

Swarm Optimization to Enhance Blockchain Security

in IoT Healthcare Systems. International Journal of

Computer Engineering in Research Trends. 12(1):29–

38.

https://doi.org/10.22362/ijcert/2025/v12/i1/v12i103

[28] Sanjay Vijay Mhaskey. (2024). Integration of

Artificial Intelligence (AI) in Enterprise Resource

Planning (ERP) Systems: Opportunities, Challenges,

and Implications. International Journal of Computer

Engineering in Research Trends. 11(12):1–9. Dadad.

DOI:10.22362/ijcert/2024/v11/i12/v11i1201

[29] J Scott. (2024). Pegasus Spyware: Omar Radi

Critical Review. International Journal of Computer

Engineering in Research Trends. 11(11):1–16.

https://doi.org/10.22362/ijcert/2024/v11/i11/v11i110

1

[30] Poreddy Ishika Reddy, Lekkala Raja Sai Rohit

Reddy, Ritish Reddy Tandra, K Venkatesh Sharma.

(2024). Automated Plant Disease Detection Using

Convolutional Neural Networks: Enhancing Accuracy

and Scalability for Sustainable

Agriculture. International Journal of Computer

Engineering in Research Trends. 11(9):1–10.

https://doi.org/10.22362/ijcert/2024/v11/i9/v11i901%

20

[31] Malek Jdaitawi, Ashraf F. Kan’an, K Samunnisa.

(2024). Blockchain-Enabled Secure Data Sharing in

Distributed IoT Networks: A Paradigm for Smart City

Applications. International Journal of Computer

Engineering in Research Trends. 11(11):24–32.

https://doi.org/10.22362/ijcert/2024/v11/i11/v11i110

3

[32] S. Mekala, A. Mallareddy, D. Baswaraj, J. Joshi,

and M. Raghava. (2023). EASND: Energy Adaptive

Secure Neighbour Discovery Scheme for Wireless

https://doi.org/10.22362/ijcert/2024/v11/i1/v11i1s09
https://doi.org/10.22362/ijcert/2025/v12/i1/v12i102
https://doi.org/10.22362/ijcert/2024/v11/i10/v11i1003
https://doi.org/10.22362/ijcert/2024/v11/i10/v11i1003
https://doi.org/10.1016/j.sysarc.2023.103035
https://doi.org/10.1002/cpe.5693
https://doi.org/10.3390/s23052622
https://doi.org/10.22362/ijcert/2025/v12/i1/v12i103
http://dx.doi.org/10.22362/ijcert/2024/v11/i12/v11i1201
https://doi.org/10.22362/ijcert/2024/v11/i9/v11i901
https://doi.org/10.22362/ijcert/2024/v11/i9/v11i901
https://doi.org/10.22362/ijcert/2024/v11/i11/v11i1103
https://doi.org/10.22362/ijcert/2024/v11/i11/v11i1103

Naga Mallikharjunarao BILLA, Prasadu PEDDI, Manendra Sai DASARI / IJCESEN 11-1(2025)1015-1031

1030

Sensor Networks. International Journal on Recent

and Innovation Trends in Computing and

Communication. 11:446–458.

DOI:10.17762/ijritcc.v11i5s.7097

[33] S. Mekala, A. Mallareddy, R. R. Tandu, and K.

Radhika. (2023). Machine Learning and Fuzzy Logic

Based Intelligent Algorithm for Energy Efficient

Routing in Wireless Sensor Networks. in Lecture

Notes in Computer Science. 14078:523–533.

DOI:10.1007/978-3-031-36402-0_49

[34] Maria González, Lars Svensson, Bhavsingh.

(2024). Adaptive Resource Management in IoT-Fog-

Cloud Networks via Hybrid Machine Learning

Models. International Journal of Computer

Engineering in Research Trends. 11(8), 1–11.

https://doi.org/10.22362/ijcert/2024/v11/i8/v11i801

[35] A. Nitish Kumar, S. Rajesh, N. Raju, S. Charan

Teja, Y. Praveen. (2024). A Smart and Scalable

Crowd Sensing-Based Student Attendance

Management System with Privacy

Preservation. Macaw International Journal of

Advanced Research in Computer Science and

Engineering. 10(1s):1-7.

[36] Agarwal, S., Reddy, C.R.K. (2024). A smart

intelligent approach based on hybrid group search and

pelican optimization algorithm for data stream

clustering. Knowledge and Information Systems

66(4):2467–2500. DOI:

https://doi.org/10.1007/s10115-023-02002-5

[37] K. Suresh, M. Sai Sushma, Tirunagari Srimehar,

Yella Mallesh, Kalyan Jagadeesh. (2024). Enhanced

Flight Delay Prediction Using Hybrid Machine

Learning Models with Error Adjustment. Macaw

International Journal of Advanced Research in

Computer Science and Engineering. 10(1s):8-15.

https://doi.org/10.70162/mijarcse//2024/v10/i1/v10i1

s02

[38] Janet C. Kimeto and Nur Azlina Mohamed

Mokmin. (2024). Leveraging Augmented Reality for

Inclusive Education: A Framework for Personalized

Learning Experiences. Int. J. Comput. Eng. Res.

Trends. 11, 12:10–22.

[39] Balasubramani, M., Subathra, K., Agarwal, S.,

JBamini; Anurag Aeron; E. Gangadevi. (2024).

Unveiling Blockchain's Potential with Consensus

Algorithms and Real-World Applications in Supply

Chain Management. TQCEBT 2024 - 2nd IEEE

International Conference on Trends in Quantum

Computing and Emerging Business Technologies.

DOI: 10.1109/TQCEBT59414.2024.10545073

[40] TN Srinivas Rao, Shaik Azad, D. Yashwanth, A.

Sai Tilak, G. Karthik Reddy, Y. Bhaskar Reddy.

(2024). An Optimized Hybrid Ensemble Machine

Learning Model for Accurate Diabetes Prediction and

Early Diagnosis. Macaw International Journal of

Advanced Research in Computer Science and

Engineering. 10(1s):16-23.

https://doi.org/10.70162/mijarcse//2024/v10/i1/v10i1

s03

[41] Omar Sami Oubbati, Adnan Shahid Khan,

Madhusanka Liyanage. (2024). Blockchain-Enhanced

Secure Routing in FANETs: Integrating ABC

Algorithms and Neural Networks for Attack

Mitigation. Synthesis: A Multidisciplinary Research

Journal. 2(2):1-11.

https://doi.org/10.70162/smrj/2024/v2/i2/v2i201

[42] G.Rishank Reddy, S.Pravalika, K Venkatesh

Sharma. (2024). Automated Real-Time Pothole

Detection Using ResNet-50 for Enhanced Accuracy

under Challenging Conditions. Synthesis: A

Multidisciplinary Research Journal. 2(2):12-22.

[43] Washik Al Mahmud, & Siyue Huang. (2024).

Hybrid Cloud-Edge Systems for Computational

Physics: Enhancing Large-Scale Simulations Through

Distributed Models. International Journal of

Computer Engineering in Research Trends.

11(12):23–32.

https://doi.org/10.22362/ijcert/2024/v11/i12/v11i120

3.

[44] S. Mekala and K. S. Shahu Chatrapathi. (2021).

Energy-Efficient Neighbor Discovery Using Bacterial

Foraging Optimization (BFO) Algorithm for

Directional Wireless Sensor Networks. in Lecture

Notes in Electrical Engineering. 749:93–107.

DOI:10.1007/978-981-16-0289-4_7

[45] V. Aravinda Rajan; Sridevi Sakhamuri; A Periya

Nayaki; Swathi Agarwal; Anurag Aeron; M.

Lawanyashri. (2024). Optimizing Object Detection

Efficiency for Autonomous Vehicles through the

Integration of YOLOv4 and EfficientDet Algorithms.

TQCEBT 2024 - 2nd IEEE International Conference

on Trends in Quantum Computing and Emerging

Business Technologies. DOI:

10.1109/TQCEBT59414.2024.10545157

[46] Claudia Rossi, David Lee. (2024). Hybrid

Optimization Algorithms for Resource Management

in IoT-Fog-Cloud Environments. Synthesis: A

Multidisciplinary Research Journal. 2(2):23-33.

[47] Joolakanti Sai Kruthika Reddy, Nagireddy Sriya

Reddy, Chennaboina Lohith, Koppu Nihal, K

Venkatesh Sharma. (2024). Detection of

Cardiovascular Diseases in ECG Images Using

Machine Learning and Deep Learning

Techniques. Frontiers in Collaborative Research.

2(3):1-10.

https://doi.org/10.70162/fcr/2024/v2/i3/v2i301

[48] Abhijith Pandiri, Sai Shreyas Venishetty, Akhil

Reddy Modugu, K Venkatesh Sharma. (2024).

Scalable and Secure Real-Time Chat Application

Development Using MERN Stack and Socket.io for

Enhanced Performance. Frontiers in Collaborative

Research. 2(3):11-22.

https://doi.org/10.70162/fcr/2024/v2/i3/v2i302

[49] Laura García, John Smith. (2024). Resource

Allocation Strategies in IoT-Fog-Cloud Networks

Using Machine Learning. Frontiers in Collaborative

Research. 2(3):23-34.

https://doi.org/10.70162/fcr/2024/v2/i3/v2i303

[50] B. Paulchamy, Vairaprakash Selvaraj, N.M.

Indumathi, K. Ananthi, & V.V. Teresa. (2024).

Integrating Sentiment Analysis with Learning

Analytics for Improved Student. International Journal

of Computational and Experimental Science and

Engineering, 10(4).

https://doi.org/10.22399/ijcesen.781

http://dx.doi.org/10.17762/ijritcc.v11i5s.7097
http://dx.doi.org/10.1007/978-3-031-36402-0_49
https://doi.org/10.22362/ijcert/2024/v11/i8/v11i801
https://doi.org/10.70162/mijarcse/2024/v10/i1/v10i1s02
https://doi.org/10.70162/mijarcse/2024/v10/i1/v10i1s02
https://doi.org/10.1109/TQCEBT59414.2024.10545073
https://doi.org/10.70162/mijarcse/2024/v10/i1/v10i1s03
https://doi.org/10.70162/mijarcse/2024/v10/i1/v10i1s03
https://doi.org/10.70162/smrj/2024/v2/i2/v2i201
https://doi.org/10.22362/ijcert/2024/v11/i12/v11i1203
https://doi.org/10.22362/ijcert/2024/v11/i12/v11i1203
http://dx.doi.org/10.1007/978-981-16-0289-4_7
https://doi.org/10.70162/fcr/2024/v2/i3/v2i301
https://doi.org/10.70162/fcr/2024/v2/i3/v2i302
https://doi.org/10.70162/fcr/2024/v2/i3/v2i303

Naga Mallikharjunarao BILLA, Prasadu PEDDI, Manendra Sai DASARI / IJCESEN 11-1(2025)1015-1031

1031

[51] Md. Saad Amin, Primitiva Morales-Romero,

Miguel Chamorro-Atalaya, M. Bhavsingh. (2023). A

Novel User Interface Design for Enhancing

Accessibility in Mobile Applications. International

Journal of Computer Engineering in Research

Trends.10(8):26–33.

https://doi.org/10.22362/ijcert/2023/v10/i08/v10i084

[52] Wang, J., Huang, C., He, K., Wang, X., Chen, X.,

Qin, K. (2013). An Energy-Aware Resource

Allocation Heuristics for VM Scheduling in Cloud.

2013 IEEE 10th International Conference on High

Performance Computing and Communications &

2013 IEEE International Conference on Embedded

and Ubiquitous Computing. 587–594.

https://doi.org/10.1109/hpcc.and.euc.2013.89

[53] Pahlevan, A., Qu, X., Zapater, M., Atienza, D.

(2018). Integrating Heuristic and Machine-Learning

Methods for Efficient Virtual Machine Allocation in

Data Centers. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems.

37(8):1667–1680.

https://doi.org/10.1109/tcad.2017.2760517

[54] S. Mekala, T. N. S. Padma, and R. R. Tandu.

(2024). DHM-OCR: A Deep Hybrid Model for Online

Course Recommendation and Sustainable

Development of Education. International Journal of

Electrical and Computer Engineering Systems.

15(4):345–354, 2024.

https://doi.org/10.32985/ijeces.15.4.5

[55] Jun-Han Huang, Fabrizio Falchi, Eneko Osaba

Icedo. (2024). Convergence of Bioinformatics and

Quantum Computing: A Novel Framework for

Genome Sequencing Acceleration. International

Journal of Computer Engineering in Research Trends.

11(8):12–22.

https://doi.org/10.22362/ijcert/2024/v11/i8/v11i802

[56] S. Mekala, S. C. Kaila, and J. R. Matang. (2024).

Hybrid Method Neighbor Node Discovery in Wireless

Sensor Networks: A Framework. MAKARA Journal of

Technology. 28(1):5 DOI: 10.7454/mst.v28i1.1620.

https://doi.org/10.22362/ijcert/2023/v10/i08/v10i084
https://doi.org/10.1109/tcad.2017.2760517
https://doi.org/10.32985/ijeces.15.4.5
https://doi.org/10.22362/ijcert/2024/v11/i8/v11i802

