Return to Article Details Dust Detection on Solar Photovoltaic Panels Used in Optoelectronics with Convolutional Neural Network-Based Deep Learning Models Download Download PDF

Validation errors:

Failed to locate the main schema resource at 'https://www.crossref.org/schemas/crossref4.3.6.xsd'.

Invalid XML:

<?xml version="1.0" encoding="utf-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/4.3.6" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:jats="http://www.ncbi.nlm.nih.gov/JATS1" xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" version="4.3.6" xsi:schemaLocation="http://www.crossref.org/schema/4.3.6 https://www.crossref.org/schemas/crossref4.3.6.xsd">
  <head>
    <doi_batch_id>_1753535952</doi_batch_id>
    <timestamp>20250726131912000</timestamp>
    <depositor>
      <depositor_name>IJCESEN</depositor_name>
      <email_address>ijcesen@gmail.com</email_address>
    </depositor>
    <registrant>Prof.Dr. Iskender AKKURT</registrant>
  </head>
  <body>
    <journal>
      <journal_metadata>
        <full_title>International Journal of Computational and Experimental Science and Engineering</full_title>
        <abbrev_title>IJCESEN</abbrev_title>
        <issn media_type="electronic">2149-9144</issn>
      </journal_metadata>
      <journal_issue>
        <publication_date media_type="online">
          <month>06</month>
          <day>01</day>
          <year>2025</year>
        </publication_date>
        <journal_volume>
          <volume>11</volume>
        </journal_volume>
        <issue>3</issue>
      </journal_issue>
      <journal_article xmlns:jats="http://www.ncbi.nlm.nih.gov/JATS1" xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" publication_type="full_text" metadata_distribution_opts="any">
        <titles>
          <title>The effect of some normalization methods on neural networks and robust methods with the presence of outliers</title>
        </titles>
        <contributors>
          <person_name contributor_role="author" sequence="first">
            <surname>Rabab Abdulrida Saleh</surname>
          </person_name>
          <person_name contributor_role="author" sequence="additional" language="en">
            <given_name>Hussein</given_name>
            <surname>Talib Jawad</surname>
          </person_name>
        </contributors>
        <jats:abstract xmlns:jats="http://www.ncbi.nlm.nih.gov/JATS1">
          <jats:p>This research aims to use some statistical transformations such as Z-Score and MIN_MAX to see how these transformations affect the performance of some robust methods and neural networks when there are outliers in the data and to compare the robust methods (LTS, MCD, and MM) and some neural networks including (RNN, GRU, and LSTM) with different activation functions represented by (Relu, Elu, and Selu).The research sample included 3000 private sector electricity generators in Iraq for the year 2021 taken from the Central Statistical Organization.The comparison was made using the mean square error (MSE) and using the statistical programs Python, R, and Excel.The results showed that both normalization techniques significantly improved the performance of the models, especially Min-Max normalization is the best for all (robust methods and neural networks) and especially the superiority of neural networks RNN, especially with deeper structures, showing good performance across different activation functions. As for the robust methods, the MM method was consistently the best, giving the lowest mean square error across all normalization techniques.</jats:p>
        </jats:abstract>
        <publication_date media_type="online">
          <month>05</month>
          <day>08</day>
          <year>2025</year>
        </publication_date>
        <ai:program xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" name="AccessIndicators">
          <ai:license_ref>https://creativecommons.org/licenses/by/4.0</ai:license_ref>
        </ai:program>
        <doi_data>
          <doi>10.22399/ijcesen.1716</doi>
          <resource>https://ijcesen.com/index.php/ijcesen/article/view/1716</resource>
          <collection property="crawler-based">
            <item crawler="iParadigms">
              <resource>https://ijcesen.com/index.php/ijcesen/article/download/1716/742</resource>
            </item>
          </collection>
          <collection property="text-mining">
            <item>
              <resource mime_type="application/pdf">https://ijcesen.com/index.php/ijcesen/article/download/1716/742</resource>
            </item>
          </collection>
        </doi_data>
        <citation_list>
          <citation key="51040">
            <unstructured_citation>[1] Alma, Ö. (2011). Comparison of Robust Regression Methods in Linear Regression. International Journal of Contemporary Mathematical Sciences. 6(9);409-421. https://avesis.deu.edu.tr/dosya?id=23aefcae-6b05-402d-89e8-ff6a8da2fc2b</unstructured_citation>
          </citation>
          <citation key="51041">
            <unstructured_citation>[2] ArunKumar, K. E., Kalaga, D. V., Kumar, C. M., Kawaji, M., &amp; Brenza, T. M. (2022). Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive integrated moving average (ARIMA), seasonal autoregressive integrated moving average (SARIMA) for forecasting COVID-19 trends. Alexandria Engineering Journal. 61;7585-7603. https://doi.org/10.1016/j.aej.2022.01.011</unstructured_citation>
          </citation>
          <citation key="51042">
            <unstructured_citation>[3] Begashaw, G. B., &amp; Yohannes, Y. B. (2020). Review of Outlier Detection and Identifying Using Robust Regression Model. International Journal of Systems Science and Applied Mathematics. 5(1);4-11. http://dx.doi.org/10.11648/j.ijssam.20200501.12</unstructured_citation>
          </citation>
          <citation key="51043">
            <unstructured_citation>[4] Bouktif, S., Fiaz, A., Ouni, A., &amp; Serhani, M. A. (2018). Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches. Energies. 11(1636);1-20. https://doi.org/10.3390/en11071636</unstructured_citation>
          </citation>
          <citation key="51044">
            <unstructured_citation>[5] Chen, G. (2018). A Gentle Tutorial of Recurrent Neural Network with Error Backpropagation. arXiv. https://arxiv.org/pdf/1610.02583.pdf</unstructured_citation>
          </citation>
          <citation key="51045">
            <unstructured_citation>[6] Chicco, D., Warrens, M., &amp; Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science. 7(3);e623. http://dx.doi.org/10.7717/peerj-cs.623</unstructured_citation>
          </citation>
          <citation key="51046">
            <unstructured_citation>[7] Cho, K., Merriënboer, B. V., &amp; Bahdanau, D. (2014). On the Properties of Neural Machine Translation: Encoder–Decoder Approaches. arXiv:1409.1259v2. https://doi.org/10.3115/v1/W14-4012</unstructured_citation>
          </citation>
          <citation key="51047">
            <unstructured_citation>[8] Čížek, P., &amp; Víšek, J. Á. (2000). Least trimmed squares. SFB373 Discussion Paper. No. 2000,53. https://hdl.handle.net/10419/62211</unstructured_citation>
          </citation>
          <citation key="51048">
            <unstructured_citation>[9] Fan, C., Chen, M., Wang, X., Wang, J., &amp; Huang, B. (2021). A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Frontiers in Energy Research. 9;652801. https://doi.org/10.3389/fenrg.2021.652801</unstructured_citation>
          </citation>
          <citation key="51049">
            <unstructured_citation>[10] Feng, J., &amp; Lu, S. (2019). Performance Analysis of Various Activation Functions in Artificial Neural Networks. Journal of Physics: Conference Series. 1237;022030. https://doi.org/10.1088/1742-6596/1237/2/022030</unstructured_citation>
          </citation>
          <citation key="51050">
            <unstructured_citation>[11] Henderi, Wahyuningsih, T., &amp; Rahwanto, E. (2021). Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer. International Journal of Informatics and Information System. 4(1);13-20. http://dx.doi.org/10.47738/ijiis.v4i1.73</unstructured_citation>
          </citation>
          <citation key="51051">
            <unstructured_citation>[12] Houdt, G. V., Mosquera, C., &amp; Napoles, G. (2020). A Review on the Long Short-Term Memory Model. Artificial Intelligence Review. 53;5929-5955. https://doi.org/10.1007/s10462-020-09838-1</unstructured_citation>
          </citation>
          <citation key="51052">
            <unstructured_citation>[13] Hubert, M., Debruyne, M., &amp; Rousseeuw, P. J. (2017). Minimum Covariance Determinant and Extensions. WIREs Computational Statistics. 2017;wics.1421. https://doi.org/10.1002/wics.1421</unstructured_citation>
          </citation>
          <citation key="51053">
            <unstructured_citation>[14] Irshayyid, A. J., &amp; Saleh, R. A. (2023). Robust estimates for a three-parameter exponential regression model. Nonlinear Analysis and Applications. 14(1);2799-2808. http://dx.doi.org/10.22075/ijnaa.2023.29395.4148</unstructured_citation>
          </citation>
          <citation key="51054">
            <unstructured_citation>[15] Jawad, H. T., &amp; Saleh, R. (2024). Estimation of the Regression Model Using M-Estimation Method and Artificial Neural Networks in the Presence of Outliers. Journal of Economics and Administrative Sciences. 30(140);688-716. https://doi.org/10.33095/g4hems75</unstructured_citation>
          </citation>
          <citation key="51055">
            <unstructured_citation>[16] Jurafsky, D., &amp; Martin, J. H. (2024). Speech and Language Processing. Third Edition draft. https://web.stanford.edu/~jurafsky/slp3/ed3bookfeb3_2024.pdf</unstructured_citation>
          </citation>
          <citation key="51056">
            <unstructured_citation>[17] Kappal, S. (2019). Data Normalization using Median &amp; Median Absolute Deviation (MMAD) based Z-Score for Robust Predictions vs. Min – Max Normalization. London Journal of Research in Science: Natural and Formal. 19(4);39-44.</unstructured_citation>
          </citation>
          <citation key="51057">
            <unstructured_citation>[18] Bahez, Z. K., &amp; Rasheed, H. A. (2022). Comparing Some of Robust the Non-Parametric Methods for Semi-Parametric Regression Models Estimation. Journal of Economics and Administrative Sciences. 28(132);105-117. https://doi.org/10.33095/jeas.v28i132.2275</unstructured_citation>
          </citation>
          <citation key="51058">
            <unstructured_citation>[19] Kılıçarslan, S., Adem, K., &amp; Çelik, M. (2021). An overview of the activation functions used in deep learning algorithms. Journal of New Results in Science. 10(3);75-88. https://doi.org/10.54187/jnrs.1011739</unstructured_citation>
          </citation>
          <citation key="51059">
            <unstructured_citation>[20] Li, C. (2019). Preprocessing Methods and Pipelines of Data Mining: An Overview. Machine Learning. https://doi.org/10.48550/arXiv.1906.08510</unstructured_citation>
          </citation>
          <citation key="51060">
            <unstructured_citation>[21] Mahdi, M. H., &amp; Hussein, S. M. (2023). Estimating the Population Mean in Stratified Random Sampling Using Combined Regression with the Presence of Outliers. Journal of Economics and Administrative Sciences. 29(136);70-80.</unstructured_citation>
          </citation>
          <citation key="51061">
            <unstructured_citation>[22] Mateus, B. C., Mendes, M., Farinha, J. T., Assis, R., &amp; Cardoso, A. M. (2021). Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press. Energies. 14(6958). https://doi.org/10.3390/en14216958</unstructured_citation>
          </citation>
          <citation key="51062">
            <unstructured_citation>[23] Nugrahani, I., Susanti, Y., &amp; Qona'ah, N. (2021). Modeling of Rice Production in Indonesia Using Robust Regression with The Method of Moments (MM) Estimation. Basic and Applied Science Conference (BASC) 2021. NST Proceedings;79-87. https://doi.org/10.11594/nstp.2021.1111</unstructured_citation>
          </citation>
          <citation key="51063">
            <unstructured_citation>[24] Nwankpa, C. E., Ijomah, W., Gachagan, A., &amp; Marshall, S. (2021). Activation functions: comparison of trends in practice and research for deep learning. 2nd International Conference on Computational Sciences and Technology. 124-133. https://doi.org/10.48550/arXiv.1811.03378</unstructured_citation>
          </citation>
          <citation key="51064">
            <unstructured_citation>[25] Panigrahi, S., &amp; Behera, H. S. (2013). Effect of Normalization Techniques on Univariate Time Series Forecasting using Evolutionary Higher Order Neural Network. International Journal of Engineering and Advanced Technology. 3(2);280-285.</unstructured_citation>
          </citation>
          <citation key="51065">
            <unstructured_citation>[26] Rahayu, D. A., Nursholihah, U. F., &amp; Suryaputra, G. (2023). Comparasion of The M, MM and S Estimator in Robust Regression Analysis on Indonesian Literacy Index Data 2018. EKSAKTA Journal of Sciences and Data Analysis. 4(1);11-22. https://doi.org/10.20885/EKSAKTA.vol4.iss1.art2</unstructured_citation>
          </citation>
          <citation key="51066">
            <unstructured_citation>[27] Saleh, R. A., &amp; Salman, M. J. (2022). Comparison of some artificial neural networks for graduate students. Periodicals of Engineering and Natural Sciences Original Research. 10(3);187-196. https://doi.org/10.21533/pen.v10i3.304</unstructured_citation>
          </citation>
          <citation key="51067">
            <unstructured_citation>[28] Sharma, S., Sharma, S., &amp; Athaiya, A. (2020). Activation Functions in Neural Networks. International Journal of Engineering Applied Sciences and Technology. 4;310-316. https://doi.org/10.33564/IJEAST.2020.v04i12.054</unstructured_citation>
          </citation>
          <citation key="51068">
            <unstructured_citation>[29] Shewalkar, A., Nyavanandi, D., &amp; Ludwig, S. A. (2019). Performance Evaluation of Deep neural networks Applied to Speech Recognition: Rnn, LSTM and GRU. Journal of Artificial Intelligence and Soft Computing Research. 9(4);235-245. https://doi.org/10.2478/jaiscr-2019-0006</unstructured_citation>
          </citation>
          <citation key="51069">
            <unstructured_citation>[30] Shiri, F. M., Perumal, T., Mustapha, N., &amp; Mohamed, R. (2023). A Comprehensive Overview and Comparative Analysis on Deep Learning Models: CNN, RNN, LSTM, GRU. arXiv:2305.17473. https://doi.org/10.48550/arXiv.2305.17473</unstructured_citation>
          </citation>
          <citation key="51070">
            <unstructured_citation>[31] Silva, I. N., Spatti, D. H., Flauzino, R. A., Liboni, L. H., &amp; Alves, S. F. (2017). Artificial Neural Networks A Practical Course. Springer. https://doi.org/10.1007/978-3-319-43162-8</unstructured_citation>
          </citation>
          <citation key="51071">
            <unstructured_citation>[32] Tatachar, A. V. (2021). Comparative Assessment of Regression Models Based On Model Evaluation Metrics. International Research Journal of Engineering and Technology. 8(9);853-860.</unstructured_citation>
          </citation>
          <citation key="51072">
            <unstructured_citation>[33] Zarzycki, K., &amp; Ławryńczuk, M. (2021). LSTM and GRU Neural Networks as Models of Dynamical Processes Used in Predictive Control: A Comparison of Models Developed for Two Chemical Reactors. Sensors. 21(5625). https://doi.org/10.3390/s21165625</unstructured_citation>
          </citation>
        </citation_list>
      </journal_article>
    </journal>
  </body>
</doi_batch>