Numerical Investigation of Fluid Effects on Heat Transfer of Nanofluids in a Plane Channel: Application to Solar Thermal Panels
DOI:
https://doi.org/10.22399/ijcesen.3506Keywords:
Laminar mixed convection, Nanofluids, Nanoparticles, Finite difference method, Thomas Algorithm (TDMA)Abstract
In this work, a numerical investigation is conducted to analyze laminar mixed convection of nanofluids in a two-dimensional horizontal channel. The lower wall of the channel dissipates heat at constant hot temperature, whereas the upper wall is adiabatic. The analysis considers five volume concentrations (φ) of copper nanoparticles (Cu), ranging from 0 to 0.2, suspended in common base fluids such as ethylene glycol, soybean oil, and sunflower oil. The effective thermal conductivity and dynamic viscosity of the nanofluid are estimated using the Maxwell-Garnett and Brinkman models, respectively. The set of governing equations is derived and solved numerically through a finite difference discretization. For numerical resolution, a line-by-line sweeping strategy in combination with the Thomas algorithm (TDMA) is implemented. The objective of this study is to investigate how viscosity and thermal conductivity influence both heat transfer and flow behavior, in order to determine the nanofluid that maximizes thermal performance. The outcomes are expected to contribute to enhancing the use of nanofluids in advanced thermal control systems.
References
[1] Yang, J., Yang, X., Wang, J., Chin, H. H., & Sundén, B. (2022). Review on Thermal Performance of Nanofluids With and Without Magnetic Fields in Heat Exchange Devices. Frontiers in Energy Research, 10, Article 822776. DOI:10.3389/fenrg.2022.822776
[2] Tian, H., Wan, D., Che, Y., Chang, J., Zhao, J., Hu, X., & Guo, Q. (2021). Simultaneous magnesia regeneration and sulfur dioxide generation in magnesium-based flue gas desulfurization process. Journal of Cleaner Production, 284, Article 124720. DOI:10.1016/j.jclepro.2020.124720
[3] Wang, C., Li, Y., Liu, X., Fu, J., Shen, J., Qi, W. (2023). Luminescence enhancement of gold nanoclusters hydrogel through co-assembly strategy and its application for detection. Journal of Molecular Liquids, 380, Article 121718. DOI:10.1016/j.molliq.2023.121718
[4] Baharin, K. W., Norizan, M. N., Shah, N. A. A., Shamsudin, I. J., Mohamad, I. S., Rosli, M. A. M., Husin, M. H. M., Abdullah, N. (2024). Assessing material selection and thermophysical considerations for sustainable nanofluids: a comprehensive review. Nano-Structures & Nano-Objects, 37, Article 101090. DOI:10.1016/j.nanoso.2024.101090
[5] Benhacine, H., Mahfoud, B., Salmi, M. (2022). Stability of an electrically conducting fluid flow between coaxial cylinders under magnetic field. Journal of Applied Fluid Mechanics, 15 (2), 563-577. DOI:10.47176/jafm.15.02.33050
[6] Benhacine, H., Mahfoud, B., Salmi, M. (2022). Stability of conducting fluid flow between coaxial cylinders under thermal gradient and axial magnetic Field. International Journal of Thermofluid Science and Technology, 9 (2), Article 090202. DOI:10.36963/IJTST.2022090202
[7] Mahfoud, B. (2023). Enhancement heat transfer of swirling nanofluid using an electrical conducting lid. Journal of Thermophysics and Heat Transfer, 37 (1), 263-271. DOI:10.2514/1.T6550
[8] Mahfoud, B. (2023). Effect of wall electrical conductivity on heat transfer enhancement of swirling nanofluid-flow. Journal of Nanofluids, 12 (2), 418-428. DOI:10.1166/jon.2023.1932
[9] Beck, M. P., Yuan, Y., Warrier, P., Teja, A. S. (2010). The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol+ water mixtures. Journal of Nanoparticle research, 12, 1469-1477. DOI:10.1007/S11051-009-9716-9
[10] Xu, H., Fan, T., Pop, I. (2013). Analysis of mixed convection flow of a nanofluid in a vertical channel with the Buongiorno mathematical model. International Communications in Heat and Mass Transfer, 44, 15-22. DOI:10.1016/j.icheatmasstransfer.2013.03.015
[11] Cimpean, D. S., Pop, I. (2012). Fully developed mixed convection flow of a nanofluid through an inclined channel filled with a porous medium. International journal of heat and mass transfer, 55 (4), 907-914. DOI:10.1016/j.ijheatmasstransfer.2011.10.018
[12] Chaour, M., Boudebous, S., Filali, A. (2020). Optimum cooling based on the exit openings position for turbulent mixed convection in ventilated cavities. Period Polytech Mech Eng, 64 (4), 307-316. DOI:10.3311/PPme.15962
[13] Boulkroune, S., Kholai, O., Mahfoud, B. (2021). Effects of Important Parameters on the Transition from Forced to Mixed Convection Flow in a Square Cavity. Defect and Diffusion Forum, 406, 36-52. DOI:10.4028/www.scientific.net/DDF.406.36
[14] Chaour, M., Boudebous, S. (2021). Prandtl and Richardson number effects on mixed convection in a vented enclosure on application to the cooling of the fins. Defect and Diffusion Forum, 406, 78-86. DOI:10.4028/www.scientific.net/DDF.406.78
[15] Aaiza, G., Khan, I., Shafie, S. (2015). Energy transfer in mixed convection MHD flow of nanofluid containing different shapes of nanoparticles in a channel filled with saturated porous medium. Nanoscale research letters, 10, Article 490. DOI:10.1186/s11671-015-1144-4
[16] Kim, H. J., Lee, S.-H., Lee, J.-H., Jang, S. P. (2015). Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids. Energy, 90 (2), 1290-1297. DOI:10.1016/j.energy.2015.06.084
[17] Das, S., Jana, R., Makinde, O. (2015). Mixed convective magnetohydrodynamic flow in a vertical channel filled with nanofluids. Engineering Science and Technology, an International Journal, 18 (2), 244-255. DOI:10.1016/j.jestch.2014.12.009
[18] Rashidi, M. M., Nasiri, M., Khezerloo, M., Laraqi, N. (2016). Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls. Journal of Magnetism and Magnetic Materials, 401, 159-168. DOI:10.1016/j.jmmm.2015.10.034
[19] Borode, A., Tshephe, T., Olubambi, P. (2025). A critical review of the thermophysical properties and applications of carbon-based hybrid nanofluids in solar thermal systems. Frontiers in Energy Research, 12, Article 1509437. DOI:10.3389/fenrg.2024.1509437
[20] Yu, Y., Du, J., Hou, J., Jin, X. et al. (2024). Investigation into the underlying mechanisms of the improvement of thermal conductivity of the hybrid nanofluids. International Journal of Heat and Mass Transfer, 226, Article 125468. DOI:10.1016/j.ijheatmasstransfer.2024.125468
[21] Zainal, N. A., Nazar, R., Naganthran, K., Pop, I. (2020). MHD mixed convection stagnation point flow of a hybrid nanofluid past a vertical flat plate with convective boundary condition. Chinese Journal of Physics, 66, 630-644. DOI:10.1016/j.cjph.2020.03.022
[22] Iqbal, Z., Akbar, N., Azhar, E., Maraj, E. (2018). Performance of hybrid nanofluid (Cu-CuO/water) on MHD rotating transport in oscillating vertical channel inspired by Hall current and thermal radiation. Alexandria engineering journal, 57 (3), 1943-1954. DOI:10.1016/j.aej.2017.03.047
[23] Elsaid, E. M., Abdel-Wahed, M. S. (2021). Mixed convection hybrid-nanofluid in a vertical channel under the effect of thermal radiative flux. Case Studies in Thermal Engineering, 25, Article 100913. DOI:10.1016/j.csite.2021.100913
[24] Brinkman, H. C. (1952). The viscosity of concentrated suspensions and solutions. Journal of chemical physics, 20 (4), 571-571. DOI:10.1063/1.1700493
[25] Maxwell, J. C. (1873). A Treatise on Electricity and Magnetism. Oxford, Clarendon Press.
[26] Angirasa, D. (2000). Mixed convection in a vented enclosure with an isothermal vertical surface. Fluid Dynamics Research, 26 (4), 219-233. DOI:10.1016/S0169-5983(99)00024-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.