Retarding Effect of the Mediating Sulfane (-S-) Group on Chelation Efficacy of Thiolic-Sulfur Toward Mercury in 2-(2-Mercaptothiazol-5-yl) acetic acid Derivative. DFT-Theoretical Study.
DOI:
https://doi.org/10.22399/ijcesen.4156Keywords:
DFT-theoretical, mercaptothiazol, chelation-efficacy, mediating-group, mercuryAbstract
Mercapto-containing chelates: 2-(2-mercapto-4-methyl-2,3-dihydrothiazol-5-yl) acetic acid (AS2NHM), 2-(2-mercapto-4-methylthiazol-5-yl) acetic acid (AS2NM), 2-(2-mercapto-5-methyl-3H-pyrrol-4-yl) acetic acid (ACSNM), 2-(5-mercapto-3-methylthiophen-2-yl) acetic acid (AS2CM), 2-(2-mercaptothiazol-5-yl) acetic acid (AS2N) and 4-ethylthiazole-2-thiol (S2NM) were studied using DFT method of calculation employing B3LYP/LanL2DZ level of theory.Computational results have showed that mediating groups (Sulfane -S- and imine =N-) along with the attached substituents (methyl -CH3 and carboxylic -COOH) surprisingly have a dramatic effect on charge density localization/delocalization on thiolic-sulfur as a donor atom and thus on its capability of binding the mercuric divalent ion.Responses for modifications brought by in all simulates were tracked by calculating the charge density on thiolic-sulfur and atoms in proximity. Related changes in geometrical parameters, namely, bond lengths and bond angles in the neighborhood of thiolic-sulfur were also monitored to hopefully provide us with more insights about the effect of the performed modifications. Images of HOMO-LUMO orbitals and charge density distribution surfaces are also presented.Effects of Sulfane (-S-) mediating group on electron density enrichment of thiolic-sulfur, thus its chelation effectiveness for mercuric ion have been investigated. This is in order to deep understand the chelation weakness of 2-(2-Mercaptothiazol-5-yl) acetic acid (AS2NM) toward mercury(II) ions in particular, which has been encountered in earlier experimental research work.Findings of the study, have clarified the drawbacks of AS2NM that lay behind its failure in stabilizing the divalent mercuric ion through effective coordination. Nevertheless, it was able of developing stronger binding with Hg metal ions compared to the other chelates, this was attributed to softness close matching with Hg ion.
References
[1] 1. L. Ja¨rup (2003). Hazards of heavy metal contamination. British Medical Bulletin 63:167.
[2] 2. R. A. Bernhoft (2012). Mercury toxicity and treatment: a review of the literature. Journal of environmental and public health:10.
[3] 3. Zahir, F.; et al., Environmental toxicology and pharmacology 2005, 20(2), 351-360.
[4] 4. Budnik, L. T.; Casteleyn, L.; Science of The Total Environment 2019, 654, 720-734.
[5] 5. J. O. Duruibe, M. O. C. Ogwuegbu, and J. N. Egwurugwu. International Journal of physical sciences 2007, 2(5), 112-118.
[6] 6. H. Sharma, N. Rawal, and B. B. Mathew. Research Journal of Pharmacology and Toxicology 2015, 1(10),1-5.
[7] 7. M. P. Waalkes. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2003, 533(1),107-120.
[8] 8. Beklemishev M.K., Dmitrenko S.G., and Isakova N.V. (1997). Solvent Extraction of Metals with Macrocyclic Reagents and its Analytical Applications, Wiley-Interscience: New York, USA.
[9] 9. Ikeda K. and Abe S., Analytica Chimica Acta,1998, 363: 1650.
[10] 10. Tanaka M., et al. The Journal of Organic Chemistry, 2000, 66, 7008.
[11] 11. Joanna konczyk, c. kozlowski, and w. Walkowiak, Physicochem. Probl. Miner. Process, 2013, 49(1), 213−222.
[12] 12. Beklemishev M.K., Dmitrenko S.G., and Isakova N.V, (1997) Solvent Extraction of Metals with MacrocyclicReagents and its Analytical Applications, ed. U. Wiley-Interscience: New York, 1997.
[13] 13. Al Abdel Hamid A., Structural Chemistry, 2019, 30(6), 2389–2399.
[14] 14. Al Abdel Hamid A., et al., Journal of Coordination Chemistry, 2010, 63(5), 731.
[15] 15. Khoutoul Md., et al., Research on Chemical Intermediates, 2015, 41, 3319.
[16] 16. Harit T., et al., Tetrahedron, 2012, 68, 4037.
[17] 17. Al Abdel Hamid, A., Kanan S., and Tahat A. Z., Research on Chemical Intermediates, 2014, 1783-6.
[18] 18. Eugenijus Norkus, et al., Heteroatom Chemistry, 2005, 16(4), 285-291.
[19] 19. Li JR, Tao Y, and B.X. Yu Q., Chem Commun, 2007, 1527–1529.
[20] 20. Matilde Fondo, et al., New Journal of Chemistry, 2008, 32, 247–257.
[21] 21. Roundhill D.M., et al. Pakistan J. Anal. Environ. Chem, 2009, 10, 1–13.
[22] 22. Chunkyung Park, Sangki Chun, and R.A. Bartsch, J Incl Phenom Macrocycl. Chem 2010 66, 95–105.
[23] 23. Zhang SM, et al. Inorg Chem 2010, 49, 11581-11586.
[24] 24. J. E. Fergusson (1990). Heavy Elements:"Chemistry Environmental Impact and Health Effects", ed. O. Pergamon Press.
[25] 25. Voutsa and .D and Samara .C. (2002). labile and bio accessible fraction of heavy metals in the airborne particulate matter from urban and industrial areas. Atmospheric Environment ed.: 3583-3590.
[26] 26. WHO, (1991). Inorganic mercury. Environmental Health Criteria 118. World Health Organization, Geneva. 1991.
[27] 27. Al Abdel Hamid A., et al., Research on Chemical Intermediates 2011, 37, 791.
[28] 28. A. Sengupta, A. Seitz, and K. M. Merz Jr, Journal of the American Chemical Society 2018. 140(45), 15166-15169.
[29] 29. Basinger M.A., et al., Journal of Inorganic and Nuclear Chemistry, 1981, 43, 1419.
[30] 30. F. D. Angelis, S. Fantacci, and A. Selloni, Phys. Lett, 2004, 389, 204.
[31] 31. Amer A. Hamid, Res Chem Intermed, 2012, DOI 10.1007/s11164-012-0920-3, Published online first.
[32] 32. Amer A. Hamid and S. Kanan, Journal of Coordination Chemistry, 2012, 65(3), 420.
[33] 33. F. De Angelis, et al., Chem. Phys. Lett. 2005, 415, 115.
[34] 34. M. K. Nazeeruddin, et al. J. Am. Chem. Soc., 2005, 127, 16835.
[35] 35. Binkley, J.S., J.A. Pople, and W.J. Hehre, J. Am. Chem. Soc. 1980, 102, 939.
[36] 36. Md. K. Nazeeruddin, et al., Inorg. Chem. 2006, 45, 787.
[37] 37. S. Ghosh, et al. Inorg. Chem. 2006, 45, 7600.
[38] 38. Peltier, C., et al., J. Phys. Chem. A 2010, 114, 8434-8443.
[39] 39. Dunning, T.H., Jr., and P.J. Hay (1976). Modern Theoritical Chemistry. Schaefer, H. F. 3thd Ed. 1976, Plenum-New York: 1-28.
[40] 40. Angelis, F.D., S. Fantacci, and A. Selloni, Phys. Lett. 2004, 389, 204.
[41] 41. Nazeeruddin, M.K., et al., Inorg. Chem. 2006, 45, 787.
[42] 42. Ghosh, S., et al., Inorg. Chem. 2006, 45, 7600.
[43] 43. Hay, P.J. and W.R. Wadt, J., Chem. Phys., 1985, 82, 270.
[44] 44. Ditchfield, R., W.J. Hehre, and J.A. Pople, J. Chem. Phys. 1971, 54, 724.
[45] 45. B. H. Besler, K. M. Merz, and P. A. Kollman, J. Comput. Chem. 1990, 11, 431.
[46] 46. Besler, B.H., K.M. Merz, and P.A. Kollman, J. Comput. Chem. 1990, 11, 431-439.
[47] 47. Singh, U.C. and P.A. Kollman, J. Comput. Chem., 1984, 5, 129-145.
[48] 48. Ferreira, M. and E. Suto. J., Phys. Chem. 1992, 66, 8844-8849.
[49] 49. Gaussian 09, M.J.F., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.