Germination and Adaptive Responses of Moringa oleifera to Drought Stress: Insights into Morphological and Biochemical Mechanisms Under PEG-6000-Induced Conditions.

Authors

  • Nadia Khater
  • Yassine Noui
  • Kenza Garah
  • Hayem Zahaf
  • Loubna Khaoula Ouaglal
  • Safa Benkemchi
  • Khouloude Ghebache

DOI:

https://doi.org/10.22399/ijcesen.4377

Keywords:

Moringa oleifera, drought stress, PEG-6000, germination, morphological changes, biochemical adaptations

Abstract

Moringa oleifera, a resilient species suited to arid and semi-tropical climates, was examined for its response to water stress induced by polyethylene glycol (PEG-6000) during germination and early growth. This study assessed the impact of different PEG-6000 concentrations (0, 4, 8, and 12 g/L) on germination rates, morphological traits, and biochemical parameters of the seedlings. Seeds showed remarkable germination capacity, reaching 100% at 12 g/L PEG-6000 concentration. However, water stress negatively affected plant development, reducing shoot length from 18 cm in the controls to 14 cm at the highest concentration, with similar declines in leaf area, leaf number, and collar diameter. Biochemical analyses indicated decreased levels of chlorophyll, soluble sugars, proline (down to 0.014 mg/mL at 12 g/L), and amino acids under stress conditions. These results suggest that while M. oleifera seeds are highly tolerant to water stress during germination, subsequent growth and biochemical functions are compromised, providing insights into their adaptability for cultivation in drought-prone areas.

References

[1] Akinyemi, T. E., & Sakpere, A. M. A. (2015). Effects of light regime and water stress on germination and seedling growth of Moringa oleifera FUTA Journal of Research in Sciences, 2, 369-377.

[2] Anwar, M. P., Jahan, R., Rahman, M. R., Islam, A. K. M. M., & Uddin, F. M. J. (2021, May). Seed priming increases seed germination and enhances seedling vigor in winter rice. In the IOP Conference Series: Earth and Environmental Science (Vol. 756, No. 1, p. 012047). IOP Publishing.

[3] Bates L. S., Waldren R. P., & Teare, I. D. (1973). Rapid determination of free proline in water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060

[4] Batool, M., El-Badri, A. M., Wang, Z., Mohamed, I. A., Yang, H., Ai, X. & Zhou, G. (2022). Rapeseed morpho-physio-biochemical responses to drought stress induced by PEG-6000. Agronomy, 12(3), 579, https://doi.org/10.3390/agronomy12030579.

[5] Belaidi, I., & Tamerdjent, H. (2019). Effects of seed coat removal and cold stratification on seed germination of species studied. Journal of Seed Science, 41(1), 45-52, doi: 10.1590/2317-1545v41n1201108.

[6] Boumenjel, A., Papadopoulos, A., & Ammari, Y. (2021). Growth response of Moringa oleifera (Lam) to water stress and arid bioclimatic conditions. Agroforestry Systems, 95(5), 823-833, https://doi.org/10.1007/s10457-020-00509-2.

[7] Devkota, S., & Bhusal, K. K. (2020). Moringa oleifera: a miracle multipurpose tree for agroforestry and climate change mitigation from the Himalayas–a review. Cogent Food & Agriculture, 6(1), 1805951, https://doi.org/10.1080/23311932.2020.1805951.

[8] Friedman, M. (2004). Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. Journal of Agricultural and Food Chemistry, 52(3), 385–406. https://doi.org/10.1021/jf030490p

[9] Gupta, S., Verma, D., Tufchi, N., Kamboj, A., Bachheti, A., Bachheti, R. K., & Husen, A. (2021). Food, fodder and fuelwoods from forest. In Non-Timber Forest Products: Food, Healthcare and Industrial Applications (pp. 383-425). Cham: Springer International Publishing, https://doi.org/10.1007/978-3-030-73077-2_17.

[10] Hajlaoui, H., Denden, M., & Bouslama, M. (2007). Etude de la variabilité intraspécifique de tolérance au stress salin du pois chiche (Cicer arietinum L.) au stade germination. Tropicultura, 25(3), 168-173.

[11] Ilyas, M., Nisar, M., Khan, N., Hazrat, A., Khan, A. H., Hayat, K., ... & Ullah, A. (2021). Drought tolerance strategies in plants: A mechanistic approach. Journal of Plant Growth Regulation, 40(3), 926-944, https://doi.org/10.1007/s00344-020-10174-5.

[12] Jain, N. K., & Saha, J. R. (1971). Effect of Storage Length on Seed Germination in Jute (Corchorus spp.) 1. Agronomy Journal, 63(4), 636-638, https://doi.org/10.2134/agronj1971.00021962006300040037x.

[13] Karami, S., Shiran, B., & Ravash, R. (2025). Molecular investigation of how drought stress affects chlorophyll metabolism and photosynthesis in leaves of C3 and C4 plant species: A transcriptome meta-analysis. Heliyon, 11(3), doi: 10.1016/j.heliyon.2025.e42368.

[14] Ödemiş, B., & Candemir, D. K. (2023). The effects of water stress on cotton leaf area and leaf morphology. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26(1), 140-149, doi:10.18016/ksutarimdoga.vi.992764.

[15] Reza Yousefi, A., Rashidi, S., Moradi, P., & Mastinu, A. (2020). Germination and seedling growth responses of Zygophyllum fabago, Salsola kali L. and Atriplex canescens to PEG-induced drought stress. Environments, 7(12), 107, https://doi.org/10.3390/environments7120107.

[16] Tissue, D. T., & Wright, S. J. (1995). Effect of seasonal water availability on phenology and the annual shoot carbohydrate cycle of tropical forest shrubs. Functional Ecology, 9(3), 518–527. https://doi.org/10.2307/2390018

[17] Toumi, M., Barris, S., Berka, S., & Fatiha, A. I. D. (2022). Effects of water stress on the physiology and morphology of Robinia pseudoacacia plants in Algeria. Bois & Forêts des Tropiques, 354, 7-17.

[18] Trigo, C., Castello, M. L., Ortola, M. D., Garcia-Mares, F. J., & Desamparados Soriano, M. (2020). Moringa oleifera: An unknown crop in developed countries with great potential for industry and adapted to climate change. Foods, 10(1), 31, https://doi.org/10.3390/foods10010031

[19] Upretee, P., Bandara, M. S., & Tanino, K. K. (2024). The role of seed characteristics on water uptake preceding germination. Seeds, 3(4), 559-574, https://doi.org/10.3390/seeds3040038.

[20] Yemm, E. W., Cocking, E. C., & Ricketts, R. E. (1955). The determination of amino-acids with ninhydrin. Analyst, 80(948), 209–214. https://doi.org/10.1039/AN9558000209;

[21] Zafar, S., Khan, M. K., Aslam, N., & Hasnain, Z. (2024). Impact of different stresses on morphology, physiology, and biochemistry of plants. In Molecular Dynamics of Plant Stress and its Management (pp. 67-91). Singapore: Springer Nature Singapore, https://doi.org/10.1007/978-981-97-1699-9_4

[22] Zhang, K., Han, X., Fu, Y., Khan, Z., Zhang, B., Bi, J., ... & Luo, L. (2024). Biochar coating promoted rice growth under drought stress through modulating photosynthetic apparatus, chloroplast ultrastructure, stomatal traits and ROS homeostasis. Plant Physiology and Biochemistry, 216, 109145, https://doi.org/10.1016/j.plaphy.2024.109145

Downloads

Published

2025-11-28

How to Cite

Khater, N., Yassine Noui, Kenza Garah, Hayem Zahaf, Loubna Khaoula Ouaglal, Safa Benkemchi, & Khouloude Ghebache. (2025). Germination and Adaptive Responses of Moringa oleifera to Drought Stress: Insights into Morphological and Biochemical Mechanisms Under PEG-6000-Induced Conditions. International Journal of Computational and Experimental Science and Engineering, 11(4). https://doi.org/10.22399/ijcesen.4377

Issue

Section

Research Article