Marine Bastadins as Potent ACAT1 Inhibitors: Integrated Molecular Docking and ADMET Profiling for Anticancer Drug Discovery

Authors

  • Nabila Taib
  • Karim Ouadah
  • Khadidja Smail
  • Fatima Zohra Fadel
  • Noureddine Tchouar

DOI:

https://doi.org/10.22399/ijcesen.4378

Keywords:

ACAT1, Bastadins, Cancer, Molecular Docking, ADMET

Abstract

Acyl-CoA: cholesterol acyltransferase 1 (ACAT1) is a key enzyme in lipid homeostasis, catalyzing the esterification of cholesterol, a process closely associated with the metabolic reprogramming that supports tumor progression. In this study, twenty-two Bastadins, bromotyrosine-derived macrocyclic metabolites isolated from the marine sponge Ianthella basta, were evaluated as potential human ACAT1 inhibitors using molecular docking, ADME analysis, and toxicity predictions. These compounds were selected based on prior reports of their experimental ACAT1 inhibitory activity, underscoring their potential as lead scaffolds for enzyme modulation. Molecular docking was performed using PyRx (v0.8), and ADMET properties were evaluated with ADMETlab 3.0 and ProTox 3.0. Among the compounds, Bastadins 8, 10, 13, and 19 demonstrated the strongest affinities toward ACAT1 (-11.0 to -11.5 kcal/mol). Bastadin 13 exhibited the most stable complex formation (-11.5 kcal/mol), involving strong hydrogen bonds as well as π-π T-shaped and π-alkyl interactions with key residues, including His460 and Phe384. Similarly, Bastadin 19 displayed a high interaction energy (-11.4 kcal/mol), engaging in stable polar and hydrophobic contacts with residues such as His460, Trp420, Asn421, Phe254, and Tyr417. ADMET predictions indicated that both Bastadins 13 and 19 possess favorable pharmacokinetic properties, including enhanced intestinal absorption, metabolic stability, and low predicted toxicity. Overall, these compounds emerge as the most promising ACAT1 inhibitors, combining strong binding, robust interactions with critical residues, and favorable ADMET characteristics, offering a rational framework for the development of novel anticancer agents, and providing a solid basis for further experimental validation and optimization in targeted cancer therapy

References

[1] Tufail, M., Wang, H., Wang, Y. (2024). Hallmarks of cancer resistance. Cell Death & Disease, 15, 266. https://pmc.ncbi.nlm.nih.gov/articles/PMC11145355/

[2] Schiliro, C., Firestein, B. L. (2021). Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells, 10(5), 1056. https://doi.org/10.3390/cells10051056

[3] Cheng, C., Geng, F., Cheng, X., Guo, D. (2018). Lipid metabolism reprogramming and its potential targets in cancer. Cancer Communications, 38(1), 27. https://doi.org/10.1186/s40880-018-0301-4

[4] Terry, A. R., Hay, N. (2024). Emerging targets in lipid metabolism for cancer therapy. Trends in Pharmacological Sciences, 45(6), 537-551. https://doi.org/10.1016/j.tips.2024.04.007

[5] Mordzińska-Rak, A., Verdeil, G., Hamon, Y., Błaszczak, E., Tromb, T. (2025). Dysregulation of cholesterol homeostasis in cancer pathogenesis. Cellular and Molecular Life Sciences, 82(1), 168. https://doi.org/10.1007/s00018-025-05617-9

[6] Tu, T., Zhang, H., Xu, H. (2023). Targeting sterol‑O‑acyltransferase 1 to disrupt cholesterol metabolism for cancer therapy. Frontiers in Oncology, 13, Article 1197502. https://doi.org/10.3389/fonc.2023.1197502

[7] Bairos, J. A., Chinedu, U. N., Zafar, M., Akl, M. G., Li, L., Parlakgul, G., Arruda, A. P., Widenmaier, S. B. (2024). Sterol O-acyltransferase (SOAT/ACAT) activity is required to form cholesterol crystals in hepatocyte lipid droplets. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1869(4), 159512. https://doi.org/10.1016/j.bbalip.2024.159512

[8] Ayyagari, V. N., Bandyopadhyay, A., Harris, R. E. (2020). Assessment of acyl‑CoA:cholesterol acyltransferase‑1 (ACAT‑1) mediated cholesterol ester accumulation in ovarian cancer progression. PLOS ONE, 15(8), e0228024. https://doi.org/10.1371/journal.pone.0228024

[9] Zixi, S., Liu, Y., Yang, Y. (2024). Targeting ACAT1 in cancer: From threat to treatment. Frontiers in Oncology, 14, 1395192. https://doi.org/10.3389/fonc.2024.1395192

[10] Li, J., Gu, D., Lee, S. Y., Wang, X., Yang, Y., Liu, Q. (2016). Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene, 35 (25), 3343‑3353. https://doi.org/10.1038/onc.2016.168

[11] He, W., Li, Y., Liu, S.-B., Chang, Y., Han, S., Han, X., Ma, Z., Amin, H. M., Song, Y.-H., Zhou, J. (2024). From mitochondria to tumor suppression: ACAT1's crucial role in gastric cancer. Frontiers in Immunology, 15, Article 1449525. https://doi.org/10.3389/fimmu.2024.1449525

[12] Sun, T., Xiao, X. (2024). Targeting ACAT1 in cancer: From threat to treatment. Frontiers in Oncology, 14, 1395192. https://doi.org/10.3389/fonc.2024.1395192

[13] Zhang, J. (2024). Target fishing and mechanistic insights of the natural anticancer drug candidate chlorogenic acid. Acta Pharmaceutica Sinica B, 14(10), 4431‑4442. https://doi.org/10.1016/j.apsb.2024.07.005

[14] Yang, Q.‑B., Liang, L.‑F. (2024). Spongia sponges: Unabated sources of novel secondary metabolites. Marine Drugs, 22(5), 213. https://doi.org/10.3390/md22050213

[15] Raymond, M. J. F., Rakotondraibe, H. L. (2025). Recent updates on terpenoids and other bioactive constituents of marine sponges. Molecules, 30(5), 1112. https://doi.org/10.3390/molecules30051112

[16] Kazlauskas, R., Lidgard, R. O., Murphy, P. T., Wells, R. J., Blount, J. F. (1981). Brominated tyrosine‑derived metabolites from the sponge Ianthella basta. Australian Journal of Chemistry, 34(4), 765‑786. https://doi.org/10.1071/CH9810765

[17] Eguchi, K., Kato, H., Fujiwara, Y., Losung, F., Mangindaan, R. E. P., de Voogd, N. J., Takeya, M., Tsukamoto, S. (2015). Bastadins, brominated-tyrosine derivatives, suppress accumulation of cholesterol ester in macrophages. Bioorganic & Medicinal Chemistry Letters, 25(22), 5389-5392. https://doi.org/10.1016/j.bmcl.2015.09.024

[18] Mathieu, V., Wauthoz, N., Lefranc, F., Niemann, H., Amighi, K., Kiss, R., Proksch, P. (2013). Cyclic versus hemi‑bastadins: Pleiotropic anti‑cancer effects from apoptosis to anti‑angiogenic and anti‑migratory effects. Molecules, 18(3), 3543‑3561. https://doi.org/10.3390/molecules18033543

[19] Miao, S. C., Andersen, R. J., Allen, T. M. (1990). Cytotoxic metabolites from the sponge Ianthella basta collected in Papua New Guinea. Journal of Natural Products, 53(6), 1441‑1446. https://doi.org/10.1021/np50072a007

[20] Aoki, S., Cho, S.-H., Ono, M., Kuwano, T., Nakao, S., Kuwano, M., Nakagawa, S., Gao, J.-Q., Mayumi, T., Shibuya, M., Kobayashi, M. (2006). Bastadin 6, a spongean brominated tyrosine derivative, inhibits tumor angiogenesis by inducing selective apoptosis to endothelial cells. Anti‑Cancer Drugs, 17(3), 269‑278. https://doi.org/10.1097/00001813-200603000-00005

[21] Greve, H., Kehraus, S., Krick, A., Kelter, G., Maier, A., Fiebig, H. H., Wright, A. D., König, G. M. (2008). Cytotoxic Bastadin 24 from the Australian Sponge Ianthella quadrangulata. Journal of Natural Products, 71(3), 309‑312. https://doi.org/10.1021/np070373e

[22] Xiao, M., Xu, J., Wang, W., Zhang, B., Liu, J., Li, J., Xu, H., Zhao, Y., Yu, X., Shi, S. (2023). Functional significance of cholesterol metabolism in cancer: From threat to treatment. Experimental & Molecular Medicine, 55(9), 1982‑1995. https://doi.org/10.1038/s12276-023-01079-w

[23] Taib, N., Tchouar, N. (2025). Computational screening and QSAR study of bastadins as ACAT1 inhibitors. International Journal of Computational and Experimental Science and Engineering, 11(4), 7270-7288. https://doi.org/10.22399/ijcesen.3994

[24] Wu, F., Zhou, Y., Li, L., Shen, X., Chen, G., Wang, X., Liang, X., Tan, M., Huang, Z. (2020). Computational approaches in preclinical studies on drug discovery and development. Frontiers in Chemistry, 8, 726. https://doi.org/10.3389/fchem.2020.00726

[25] Laeeq, S., Dubey, V. (2022). Computational prediction of ADMET properties of ACAT inhibitors for synthesis and pharmacological screening. International Journal of Health Sciences, 6 (S7), 2377‑2388. https://doi.org/10.53730/ijhs.v6nS7.11866

[26] Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., Bolton, E. E. (2021). PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388-D1395. https://doi.org/10.1093/nar/gkaa971

[27] Sterling, T., Irwin, J. J. (2015). ZINC 15 – ligand discovery for everyone. Journal of Chemical Information and Modeling, 55(11), 2324-2337. https://doi.org/10.1021/acs.jcim.5b00559

[28] Dallakyan, S., Olson, A. J. (2015). Small-Molecule Library Screening by Docking with PyRx. In J. E. Hempel (Ed.), Chemical Biology: Methods and Protocols (Methods in Molecular Biology, Vol. 1263, pp. 243-250). Springer. https://doi.org/10.1007/978-1-4939-2269-7_19

[29] O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33

[30] Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Zardecki, C. (2002). The Protein Data Bank. Acta Crystallographica Section D: Biological Crystallography, 58(6), 899-907. https://doi.org/10.1107/S0907444902003451

[31] BIOVIA. (2024). BIOVIA Discovery Studio (Version 2024). Dassault Systèmes. San Diego, CA, USA.

[32] Trott, O., Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334

[33] Yusuf, D., Davis, A. M., Kleywegt, G. J., Schmitt, S. (2008). An alternative method for the evaluation of docking performance: RSR vs RMSD. Journal of Chemical Information and Modeling, 48(7), 1411-1422. https://doi.org/10.1021/ci800084x

[34] Schrödinger, LLC. (2023). The PyMOL Molecular Graphics System, Version 3.1

[35] Dassault Systèmes BIOVIA. (2024). BIOVIA Discovery Studio Visualizer, Version 24

[36] Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785-2791. https://doi.org/10.1002/jcc.21256

[37] Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T. (2024). ADMETlab 3.0: Integrating AI and PBPK models with extended usability and reliability for ADMET predictions. Nucleic Acids Research, 52(W1), W422-W431. https://doi.org/10.1093/nar/gkae236

[38] Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., Tang, Y. (2019). admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35(6), 1067-1069. https://doi.org/10.1093/bioinformatics/bty707

[39] Banerjee, P., Koutsoukas, A., Ecker, G. F. (2024). ProTox-3.0: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 52(W1), W513-W519. https://doi.org/10.1093/nar/gkae303

[40] Li, Q., Cheng, T., Wang, Y., Bryant, S. H. (2010). PubChem as a public resource for drug discovery. Drug Discovery Today, 15(23-24), 1052-1057. https://doi.org/10.1016/j.drudis.2010.10.003

[41] Long, T., Sun, Y., Hassan, A., Qi, X., Li, X. (2020). Structure of nevanimibe-bound tetrameric human ACAT1. Nature, 581(7808), 339-343. https://doi.org/10.1038/s41586-020-2295-8

[42] Lu, Y., Wang, Y., Zhu, W. (2010). Non-bonding interactions of organic halogens in biological systems: Implications for drug discovery and biomolecular design. Physical Chemistry Chemical Physics, 12(18), 4543-4551. https://doi.org/10.1039/B926326H

[43] Pace, C. N., Fu, H., Fryar, K. L., Landua, J., Trevino, S. R., Schell, D., Thurlkill, R. L., Imura, S., Scholtz, J. M., Gajiwala, K., Sevcik, J., Urbanikova, L., Myers, J. K., Takano, K., Hebert, E. J., Shirley, B. A., Grimsley, G. R. (2014). Contribution of hydrogen bonds to protein stability. Protein Science, 23(5), 652-661. https://doi.org/10.1002/pro.2449

[44] Ippolito, J. A., Christianson, D. W. (1992). The contribution of halogen atoms to protein–ligand interactions. International Journal of Biological Macromolecules,14(4),193-197. https://doi.org/10.1016/S0141-8130(05)80026-1

[45] Perrin, C. L. (2010). Are short, low-barrier hydrogen bonds unusually strong? Accounts of Chemical Research, 43(12), 1550-1557. https://doi.org/10.1021/ar100097j

[46] Cheng, F., Li, W., Liu, G., Tang, Y. (2013). In silico ADMET prediction: Recent advances, current challenges and future trends. Current Topics in Medicinal Chemistry, 13(10), 1273-1289. https://doi.org/10.2174/15680266113139990033

Downloads

Published

2025-11-28

How to Cite

Taib, N., Karim Ouadah, Khadidja Smail, Fatima Zohra Fadel, & Noureddine Tchouar. (2025). Marine Bastadins as Potent ACAT1 Inhibitors: Integrated Molecular Docking and ADMET Profiling for Anticancer Drug Discovery. International Journal of Computational and Experimental Science and Engineering, 11(4). https://doi.org/10.22399/ijcesen.4378

Issue

Section

Research Article