Comparative Evaluation of Feature Selection Techniques and Machine Learning Algorithms for Alzheimer's Disease Staging

Authors

DOI:

https://doi.org/10.22399/ijcesen.1077

Keywords:

Alzheimer's disease, Feature selection, Machine learning, Feature extraction, Texture analysis

Abstract

Dementia encompasses a range of brain disorders characterized by cognitive decline, with memory loss as a hallmark symptom. Alzheimer's disease (AD), the most common form of dementia, progressively affects cognitive functions, leading to severe memory loss. Early and accurate detection of AD is essential for timely intervention, preventing further neuronal damage, and improving patient outcomes. This study employs machine learning (ML) techniques, feature selection methods, and texture analysis to enhance AD diagnosis. By systematically evaluating various feature selection techniques and Principal Component Analysis (PCA) in conjunction with multiple ML algorithms, the study identifies the most effective approach for classifying AD stages. The integration of texture-based features with ML models demonstrates a significant improvement in distinguishing Cognitive Normal, Mild Cognitive Impairment, and AD stages. These findings highlight the clinical significance of combining feature selection and texture analysis with ML for early AD diagnosis, facilitating more precise disease classification and contributing to personalized treatment strategies.

References

Basheera, S., & Ram, M. S. S. (2019). Convolution neural network–based Alzheimer's disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 5, 974-986.

Angkoso, C. V., Tjahyaningtijas, H. P. A., Adrianto, Y., Sensusiati, A. D., Purnama, I. K. E., & Purnomo, M. H. (2022). Multi-features fusion in multi-plane MRI images for Alzheimer’s disease classification. Int. J. Intell. Eng. Syst, 15(4), 182-197.

Ammal, S. M., & Manoharan, P. S. (2023). Multi-Headed Deep Learning Models to Detect Abnormality of Alzheimer's Patients. Computer Systems Science & Engineering, 44(1).

AV, A., KUMAR, D. A. S., & LATIP, D. R. (2023). CNN-MOBILENETV2-DEEP LEARNING-BASED ALZHEIMER’S DISEASE PREDICTION AND CLASSIFICATION. Journal of Theoretical and Applied Information Technology, 101(9).

Lee, J., Meijer, E., Langa, K. M., Ganguli, M., Varghese, M., Banerjee, J., & Dey, A. B. (2023). Prevalence of dementia in India: National and state estimates from a nationwide study. Alzheimer's & Dementia, 19(7), 2898-2912.

AlSaeed, D., & Omar, S. F. (2022). Brain MRI analysis for Alzheimer’s disease diagnosis using CNN-based feature extraction and machine learning. Sensors, 22(8), 2911.

Alshamlan H, Alwassel A, Banafa A, Alsaleem L. (2024). Improving Alzheimer’s Disease Prediction with Different Machine Learning Approaches and Feature Selection Techniques. Diagnostics.; 14(19):2237. https://doi.org/10.3390/diagnostics14192237.

Arjaria, S. K., Rathore, A. S., Bisen, D., & Bhattacharyya, S. (2024). Performances of Machine Learning Models for Diagnosis of Alzheimer’s Disease. Annals of Data Science, 11(1), 307-335.

Uddin, K.M.M., Alam, M.J., Jannat-E-Anawar. (2023). A Novel Approach Utilizing Machine Learning for the Early Diagnosis of Alzheimer's Disease. Biomedical Materials & Devices 1, 882–898. https://doi.org/10.1007/s44174-023-00078-9.

Gu, F., Ma, S., Wang, X., Zhao, J., Yu, Y., & Song, X. (2022). Evaluation of feature selection for Alzheimer’s disease diagnosis. Frontiers in aging neuroscience, 14, 924113.

Yue, L., Chen, W. G., Liu, S. C., Chen, S. B., & Xiao, S. F. (2023). An explainable machine learning based prediction model for Alzheimer's disease in China longitudinal aging study. Frontiers in Aging Neuroscience, 15, 1267020.

Reddy, G. N., & Nagireddy, K. (2022). A Robust Machine Learning Approach for Multiclass Alzheimer’s Disease Detection using 3D Brain Magnetic Resonance Images. Journal of Engineering Research (2307-1877), 10.

AlSaeed, D., & Omar, S. F. (2022). Brain MRI analysis for Alzheimer’s disease diagnosis using CNN-based feature extraction and machine learning. Sensors, 22(8), 2911.

Ahmadi M, Javaheri D, Khajavi M, Danesh K, Hur J (2024) A deeply supervised adaptable neural network for diagnosis and classification of Alzheimer’s severity using multitask feature extraction. PLoS ONE 19(3): e0297996. https://doi. org/10.1371/journal.pone.0297996.

Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst, A. C., Harvey, D. J., & Weiner, M. W. (2010). Alzheimer's disease Neuroimaging Initiative (ADNI) clinical characterization. Neurology, 74(3), 201-209.

Altaf, T., Anwar, S. M., Gul, N., Majeed, M. N., & Majid, M. (2018). Multi-class Alzheimer's disease classification using image and clinical features. Biomedical Signal Processing and Control, 43, 64-74.

SonicStrain. (2023). Skull stripping using DeepBrain. GitHub repository. https://github.com/SonicStrain/skull-stripping-using-deepbrain/tree/main, accessed on 3/03/2023.

Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, & Smith SM. (2011) Fsl. NeuroImage. 2012;62:782–790. doi: 10.1016/j.neuroimage.09.015.

Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics,SMC-3(6), 610-621.

Soh, L. K., & Tsatsoulis, C. (1999). Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Transactions on geoscience and remote sensing, 37(2), 780-795.

Gonzalez, R. C., & Woods, R. E. (2002). Digital Image Processing (2nd ed.). Prentice-Hall, Inc.

Amadasun, M., & King, R. (1989). Textural features corresponding to textural properties. IEEE Transactions on systems, man, and Cybernetics, 19(5), 1264-1274.

Montgomery, D. C. (2012). Design and Analysis of Experiments (8th ed.). Hoboken, NJ: John Wiley & Sons.

Agresti, A. (2007). An Introduction to Categorical Data Analysis (2nd ed.). Hoboken, NJ: John Wiley & Sons.

Brown, G., Pocock, A., Zhao, M.J., & Luján, M. (2012). Conditional likelihood maximisation: A unifying framework for information theoretic feature selection. Journal of Machine Learning Research, 13, 27-66.

Rupapara, V., Rustam, F., Ishaq, A., Lee, E., & Ashraf, I.(2023). Chi-square and PCA based feature selection for diabetes detection with ensemble classifier. Intelligent Automation & Soft Computing, 36(2), 1931-1949.

Altman, N.S. (1992). An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. The American Statistician, 46(3), 175-185.

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning,63(1), 3-42.

Breiman, L.(2001). Random Forests. Machine Learning, 45(1), 5-32.

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

Panigrahi, R., Borah, S., Day, N., Babo, R., & Ashour, A. S. (2018). Classification and analysis of facebook metrics dataset using supervised classifiers. Social Network Analytics: Computational Research Methods and Techniques, 1.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139.

Dorogush, A. V., Ershov, V., & Gulin, A. (2018). CatBoost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363.

Hand, D. J., & Yu, K. (2001). Idiot's Bayes—not so stupid after all?. International Statistical Review, 69(3), 385-398.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536.

Johnsymol Joy, & Mercy Paul Selvan. (2025). An efficient hybrid Deep Learning-Machine Learning method for diagnosing neurodegenerative disorders. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.701

P., A. M., & R. GUNASUNDARI. (2024). An Interpretable PyCaret Approach for Alzheimer’s Disease Prediction. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.655

S. Amuthan, & N.C. Senthil Kumar. (2025). Emerging Trends in Deep Learning for Early Alzheimer’s Disease Diagnosis and Classification: A Comprehensive Review. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.739

Rama Lakshmi BOYAPATI, & Radhika YALAVARTHI. (2024). RESNET-53 for Extraction of Alzheimer’s Features Using Enhanced Learning Models. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.519

Downloads

Published

2025-03-21

How to Cite

Gayathri L, Muralidhara BL, & Rajesh B. (2025). Comparative Evaluation of Feature Selection Techniques and Machine Learning Algorithms for Alzheimer’s Disease Staging. International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.1077

Issue

Section

Research Article