Homogenized failure model of corrugated sandwich panels under tension

Authors

  • Viet Dung Luong

DOI:

https://doi.org/10.22399/ijcesen.2969

Keywords:

Finite Element Simulation , Homogenization, Subroutine, Cardboard

Abstract

Corrugated core sandwich panels are widely used due to their high strength-to-weight ratio and superior energy absorption. This paper presents a finite element homogenization model to predict the mechanical failure behavior of corrugated core sandwich panels under tension. The homogenization method simplifies the complex core geometry while preserving the mechanical properties of the structure. A homogeneous 2D plate replaces the 3D model of the panel with isotropic properties. The mechanical behavior model of Chow and Wang is used to describe the response of each material layer. The homogenization process is performed through local integration over the thickness of the layers. The model is implemented in Abaqus software through the UGENS user subroutine. The results from the model are compared with full 3D simulations, demonstrating the computational efficiency, model-building time, and accuracy of the proposed method

References

[1] M. R. M. Rejab, & W. J. Cantwell (2013). The mechanical behaviour of corrugated core sandwich panels. Composite Part B: Engineering, 47, 267–277. https://doi.org/10.1016/j.compositesb.2012.10.031 DOI: https://doi.org/10.1016/j.compositesb.2012.10.031

[2] F. Xia, Y. Durandet, P. J. Tan, & D. Ruan (2022). Three point bending performance of sandwich panels with various types of cores. Thin Walled Structures, 179. https://doi.org/10.1016/j.tws.2022.109723 DOI: https://doi.org/10.1016/j.tws.2022.109723

[3] J. Kortenoeven, B. Boon, & A. De Bruijn (2008). Application of sandwich panels in design and building of dredging ships. Journal of Ship Production, 24(3), 125–134. https://doi.org/10.5957/jsp.2008.24.3.125 DOI: https://doi.org/10.5957/jsp.2008.24.3.125

[4] K. Ciesielczyk, & R. Studziński (2022). Experimental investigation of sandwich panels supported by thin walled beams under various load arrangements and number of connectors. Archives of Civil Engineering, 68(4), 389–402. https://doi.org/10.24425/ace.2022.143045 DOI: https://doi.org/10.24425/ace.2022.143045

[5] S. A. A. Khalkhali, N. Nariman zadeh, & Sh. Khakshournia (2014). Optimal design of sandwich panels using multi objective genetic algorithm and finite element method. International Journal of Engineering, 27(3C). https://doi.org/10.5829/idosi.ije.2014.27.03c.06 DOI: https://doi.org/10.5829/idosi.ije.2014.27.03c.06

[6] D. Bensahal, & M. N. Amrane (2016). Effects of material and geometrical parameters on the free vibration of sandwich beams. International Journal of Engineering Transactions B: Applications, 29(2), 222–228. https://doi.org/10.5829/idosi.ije.2016.29.02b.11 DOI: https://doi.org/10.5829/idosi.ije.2016.29.02b.11

[7] D. Muniraj, & V. M. Sreehari (2021). Experimental damage evaluation of honeycomb sandwich with composite face sheets under impact load. International Journal of Engineering Transactions A: Basics, 34(4), 999–1007. https://doi.org/10.5829/ije.2021.34.04a.26 DOI: https://doi.org/10.5829/ije.2021.34.04a.26

[8] F. Xia, P. J. Tan, & D. Ruan (2022). Failure mechanisms of corrugated sandwich panels under transverse three point bending. Journal of Sandwich Structures & Materials, 24(4), 1808–1827. https://doi.org/10.1177/10996362221086517 DOI: https://doi.org/10.1177/10996362221086517

[9] A. Stefan, G. Pelin, C. E. Pelin, A. R. Petre, & M. Marin (2021). Manufacturing process, mechanical behavior and modeling of composite-structure sandwich panels. INCAS Bulletin, 13(1), 183–191. https://doi.org/10.13111/2066-8201.2021.13.1.19 DOI: https://doi.org/10.13111/2066-8201.2021.13.1.19

[10] L. Ke, K. Liu, G. Wu, Z. Wang, & P. Wang (2021). Multi objective optimization design of corrugated steel sandwich panel for impact resistance. Metals, 11(9). https://doi.org/10.3390/met11091378 DOI: https://doi.org/10.3390/met11091378

[11] H. Abedzade Atar, M. Zarrebini, H. Hasani, & J. Rezaeepazhand (2021). Determination of corrugated core sandwich panels elastic constant based on three different experimental methods and effect of structural integrity on flexural properties. SN Applied Sciences, 3(4). https://doi.org/10.1007/s42452-021-04424-8 DOI: https://doi.org/10.1007/s42452-021-04424-8

[12] M. R. Schultz, L. Oremont, J. C. Guzman, D. McCarville, C. A. Rose, & M. W. Hilburger (2011). Compression behavior of fluted core composite panels. In Collection of Technical Papers – AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. https://doi.org/10.2514/6.2011-2170 DOI: https://doi.org/10.2514/6.2011-2170

[13] F. Xia, T. Pang, G. Sun, & D. Ruan (2022). Longitudinal bending of corrugated sandwich panels with cores of various shapes. Thin Walled Structures, 173. https://doi.org/10.1016/j.tws.2022.109001 DOI: https://doi.org/10.1016/j.tws.2022.109001

[14] N. Talbi, A. Batti, R. Ayad, & Y. Q. Guo (2009). An analytical homogenization model for finite element modelling of corrugated cardboard. Composite Structures, 88(2), 280–289. https://doi.org/10.1016/j.compstruct.2008.04.008 DOI: https://doi.org/10.1016/j.compstruct.2008.04.008

[15] A. Batti (2009). Modèle d’homogénéisation analytique et analyse non linéaire des structures d’emballage en carton ondulé (Unpublished doctoral dissertation). Université de Reims Champagne Ardenne.

[16] P. Duong, B. Abbès, Y. M. Li, A. D. Hammou, M. Makhlouf, & Y. Q. Guo (2013). An analytic homogenisation model for shear–torsion coupling problems of double corrugated core sandwich plates. Journal of Composite Materials, 47(11), 1327–134. https://doi.org/10.1177/0021998312447206 DOI: https://doi.org/10.1177/0021998312447206

[17] Z. Aboura, N. Talbi, S. Allaoui, & M. L. Benzeggagh (2004). Elastic behavior of corrugated cardboard: Experiments and modeling. Composite Structures, 63(1), 53–62. https://doi.org/10.1016/S0263-8223(03)00131-4 DOI: https://doi.org/10.1016/S0263-8223(03)00131-4

[18] N. Buannic, P. Cartraud, & T. Quesnel (2003). Homogenization of corrugated core sandwich panels. Composite Structures, 59(3), 299–312. https://doi.org/10.1016/S0263-8223(02)00246-5 DOI: https://doi.org/10.1016/S0263-8223(02)00246-5

[19] N. Stenberg, C. Fellers, & S. Östlund (2001). Plasticity in the thickness direction of paperboard under combined shear and normal loading. Journal of Engineering Materials and Technology, 123(2), 184–190. https://doi.org/10.1115/1.1352747 DOI: https://doi.org/10.1115/1.1352747

[20] Y. Q. G. A. D. Hammou, P. T. M. Duong, B. Abbès, & M. Makhlouf (2012). Finite element simulation with a homogenization model: Cardboard packaging. Mechanics & Industry, 13(3), 175–184. DOI: https://doi.org/10.1051/meca/2012013

[21] V. D. Luong et al. (2018). Finite element simulation of the strength of corrugated board boxes under impact dynamics. In Lecture Notes in Mechanical Engineering, Part F3, 369–380. https://doi.org/10.1007/978-981-10-7149-2_25 DOI: https://doi.org/10.1007/978-981-10-7149-2_25

[22] V. D. Luong, F. Abbès, M. P. Hoang, P. T. M. Duong, & B. Abbès (2021). Finite element elastoplastic homogenization model of a corrugated core sandwich structure. Steel and Composite Structures, 41(3), 437–445. https://doi.org/10.12989/scs.2021.41.3.437

[23] V. D. Luong, A. S. Bonnin, F. Abbès, J. B. Nolot, D. Erre, & B. Abbès (2021). Finite element and experimental investigation on the effect of repetitive shock in corrugated cardboard packaging. Journal of Applied and Computational Mechanics, 7(2), 820–830. https://doi.org/10.22055/jacm.2020.35968.2771

[24] D. L. Tien, N. T. T. Phuong, D. P. T. Minh, & V. D. Luong (2023). Finite element simulation for the plastic behavior of corrugated core sandwich panel. Journal of the Serbian Society for Computational Mechanics, 17(2), 142–152. https://doi.org/10.24874/jsscm.2023.17.02.10 DOI: https://doi.org/10.24874/jsscm.2023.17.02.10

[25] D. L. Lien Tien Dao & P. T. M. Minh Duong (2024). Analysis of stress and strain in sandwich structures using an equivalent finite element model. International Journal of Engineering and Technology Innovation. https://doi.org/10.46604/ijeti.2024 DOI: https://doi.org/10.46604/ijeti.2024.13630

[26] D. Mrówczyński & T. Garbowski (2023). Influence of imperfections on the effective stiffness of multilayer corrugated board. Materials, 16(3). https://doi.org/10.3390/ma16031295 DOI: https://doi.org/10.3390/ma16031295

[27] C. L. Chow & J. Wang (1987). An anisotropic theory of continuum damage mechanics for ductile fracture. Engineering Fracture Mechanics, 27(5), 547–558. https://doi.org/10.1016/0013-7944(87)90108-1 DOI: https://doi.org/10.1016/0013-7944(87)90108-1

[28] H. Lee, K. Peng, & J. Wang (1985). An anisotropic damage criterion for deformation instability and its application to forming limit analysis of metal plates. Engineering Fracture Mechanics, 21, 1031–1054. DOI: https://doi.org/10.1016/0013-7944(85)90008-6

[29] J. N. Reddy (2003). Mechanics of laminated composite plates and shells. CRC Press. https://doi.org/10.1201/b12409 DOI: https://doi.org/10.1201/b12409

[30] N. Stenberg (2003). A model for the through thickness elastic plastic behaviour of paper. International Journal of Solids and Structures, 40(26), 7483–7498. https://doi.org/10.1016/j.ijsolstr.2003.09.003 DOI: https://doi.org/10.1016/j.ijsolstr.2003.09.003

[31] D. Lien Tien Dao & V. D. Luong (2024). Inverse identification method of plasticity parameters of anisotropic material. Journal of the Serbian Society for Computational Mechanics, 18(2), 106–119. https://doi.org/10.24874/jsscm.2024.18.02.07 DOI: https://doi.org/10.24874/jsscm.2024.18.02.06

Downloads

Published

2025-06-12

How to Cite

Dung Luong, V. (2025). Homogenized failure model of corrugated sandwich panels under tension. International Journal of Computational and Experimental Science and Engineering, 11(3). https://doi.org/10.22399/ijcesen.2969

Issue

Section

Research Article