Stability and Chaos Control in a Novel Three-Dimensional Multistable dynamical System with Coexisting Attractors

Authors

  • Maysoon M. Aziz Department of Mathematics – College of Computer Sciences and Mathematics – University of Mosul, 41002 Mosul – Iraq
  • Qusay W. Habash Department of mathematics College of Computer Science and mathematics University of Tikrit, Tikrit, Iraq.

DOI:

https://doi.org/10.22399/ijcesen.1635

Keywords:

Adaptive Control, Bifurcation, Continued fraction, Kaplan York dimension, Multi Stability and synchronization

Abstract

 This paper introduces three-dimensional Continuous-time autonomous dynamical system. We Construct new Lyapunove function for this system, the analysis of stability by new method is consistence with other method of stability. Basic dynamical proper ties such as equilibrium points, dissipativity, multistability, Wave form in time domain, phase portrait, bifurcation and Lyapunov exponents are studied, the analysis indicate that the system is unstable and hyperchaotic with Kaplan york dimension 2.1621. A novel feature of the system has multistability and attraction coexistence for two and three distinct initial condition sets. Also, adaptive control and synchronization system has been created, it is found that the hyperchaotic system achieved good results.

References

[1] Vaidyanathan, S., Feki, M., Sambas, A., & Lien, C. H. (2018). A new biological snap oscillator: its modelling, analysis, simulations and circuit design. International Journal of Simulation and Process Modelling, 13(5), 419-432. DOI: https://doi.org/10.1504/IJSPM.2018.094734

[2] Dong, E., Yuan, M., Du, S., & Chen, Z. (2019). A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator. Applied Mathematical Modelling, 73, 40-71. DOI: https://doi.org/10.1016/j.apm.2019.03.037

[3] Aziz, M. M., Al-Nuaimi, Z., and Alkhayat, R. Y. Y., “Stability Analysis of Mathematical Models of Diabetes Type one By Using Pade Approximate,” International Conference on Fractional Differentiation and Its Applications (ICFDA), pp. 1-6. 2023. DOI: https://doi.org/10.1109/ICFDA58234.2023.10153325

[4] Liu, J., Meng, Y., Fitzsimmons, M., & Zhou, R. (2025). Physics-informed neural network Lyapunov functions: PDE characterization, learning, and verification. Automatica, 175, 112193. DOI: https://doi.org/10.1016/j.automatica.2025.112193

[5] Alligood, K. T., Sauer, T. D., Yorke, J. A., & Chillingworth, D. (1998). Chaos: an introduction to dynamical systems. SIAM Review, 40(3). DOI: https://doi.org/10.1007/978-3-642-59281-2

[6] Sprott, J. C. (1994). Some simple chaotic flows. Physical review E, 50(2), R647. DOI: https://doi.org/10.1103/PhysRevE.50.R647

[7] Aziz, M.M, “Mathematical Model for the effect of buoyancy forces on the stability of a fluid flow,” European Journal of Pure and Applied Mathematics, vol. 16, no. 2, 983-996, 2023 DOI: https://doi.org/10.29020/nybg.ejpam.v16i2.4751

[8] Rossler, O. (1979). An equation for hyperchaos. Physics Letters A, 71(2-3), 155-157. DOI: https://doi.org/10.1016/0375-9601(79)90150-6

[9] Nazish, M., & Banday, M. T. (2024). A novel fibonacci-sequence-based chaotification model for enhancing chaos in one-dimensional maps. IEEE Internet of Things Journal. DOI: https://doi.org/10.1109/JIOT.2024.3450547

[10] Ravichandran, K. (2021). Rabinovich-fabrikant chaotic system and its application to secure communication. DOI: https://doi.org/10.21203/rs.3.rs-965343/v1

[11] Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of atmospheric sciences, 20(2), 130-141. DOI: https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

[12] Rössler, O. E. (1976). Different types of chaos in two simple differential equations. Zeitschrift für Naturforschung A, 31(12), 1664-1670. DOI: https://doi.org/10.1515/zna-1976-1231

[13] Curry, J. H. (1978). A generalized Lorenz system. Communications in Mathematical Physics, 60, 193-204. DOI: https://doi.org/10.1007/BF01612888

[14] Lü, J., Han, F., Yu, X., & Chen, G. (2004). Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method. Automatica, 40(10), 1677-1687. DOI: https://doi.org/10.1016/j.automatica.2004.06.001

[15] Haris, M., Shafiq, M., Ahmad, I., Ali, Z., Manickam, G., & Ghaffar, A. (2024). A time-efficient nonlinear control method for the hyperchaotic finance system synchronization. Indonesian Journal of Electrical Engineering and Computer Science, 35(2), 834-843. DOI: https://doi.org/10.11591/ijeecs.v35.i2.pp834-843

[16] Elabbasy, E., Agiza, H. N. H. N., & El-Dessoky, M. (2006). Global chaos synchronization for four scroll attractors by nonlinear control. Sci. Res. Essay, 1(3), 65.

[17] Khan, A., & Singh, P. (2015). Chaos synchronization in Lorenz system. Applied Mathematics, 6(11), 1864-1872. DOI: https://doi.org/10.4236/am.2015.611164

[18] Khan, A., &Shikha. (2017). Hybrid function projective synchronization of chaotic systems via adaptive control. International Journal of Dynamics and Control, 5, 1114-1121. DOI: https://doi.org/10.1007/s40435-016-0258-6

[19] Tirandaz, H., Aminabadi, S. S., & Tavakoli, H. (2018). Chaos synchronization and parameter identification of a finance chaotic system with unknown parameters, a linear feedback controller. Alexandria engineering journal, 57(3), 1519-1524. DOI: https://doi.org/10.1016/j.aej.2017.03.041

[20] DiStefano, J. J., Stubberud, A. R., & Williams, I. J. (2012). Feedback and control systems. (No Title).

[21] Pinheiro, R. F., Fonseca-Pinto, R., & Colón, D. (2024). A review of the Lurie problem and its applications in the medical and biological fields. AIMS Mathematics, 9(11), 32962-32999. DOI: https://doi.org/10.3934/math.20241577

[22] Gritli, H., Khraief, N., & Belghith, S. (2015). Further investigation of the period-three routes to chaos in the passive compass-gait biped model. In Handbook of Research on Advanced Intelligent Control Engineering and Automation (pp. 279-300). IGI Global. DOI: https://doi.org/10.4018/978-1-4666-7248-2.ch010

[23] Qassime, E., Abou, A., Nhaila, H., & Bahatti, L. (2024). Enhancing the Security and Efficiency of Biomedical Image Encryption through a Novel Hyper-Chaotic Logistic Map. International Journal of Intelligent Engineering & Systems, 17(5). DOI: https://doi.org/10.22266/ijies2024.1031.27

[24] Bouali, S. (2012). A novel strange attractor with a stretched loop. Nonlinear Dynamics, 70, 2375-2381. DOI: https://doi.org/10.1007/s11071-012-0625-6

[25] Hamidouche, B., Guesmi, K., & Essounbouli, N. (2024). Mastering chaos: A review. Annual Reviews in Control, 58, 100966. DOI: https://doi.org/10.1016/j.arcontrol.2024.100966

[26] Evans, D. J., Cohen, E. G. D., Searles, D. J., & Bonetto, F. (2000). Note on the Kaplan–Yorke dimension and linear transport coefficients. Journal of Statistical Physics, 101, 17-34. DOI: https://doi.org/10.1023/A:1026449702528

[27] Heidel, J., & Zhang, F. (2007). Nonchaotic and chaotic behavior in three-dimensional quadratic systems: Five-one conservative cases. International Journal of Bifurcation and Chaos, 17(06), 2049-2072. DOI: https://doi.org/10.1142/S021812740701821X

[28] Van Gorder, R. A., & Choudhury, S. R. (2011). Analytical Hopf bifurcation and stability analysis of T system. Communications in Theoretical Physics, 55(4), 6 DOI: https://doi.org/10.1088/0253-6102/55/4/17

Downloads

Published

2025-05-26

How to Cite

Maysoon M. Aziz, & Qusay W. Habash. (2025). Stability and Chaos Control in a Novel Three-Dimensional Multistable dynamical System with Coexisting Attractors . International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.1635

Issue

Section

Research Article