Using Linear Regression For Used Car Price Prediction
Keywords:
Machine Learning, Car Price Prediction, Linear RegressionAbstract
Recently, there have been studies on the use of machine learning algorithms for price prediction in many different areas such as stock market, rent a house and used car sales. Studies give information about which algorithm is more successful in price prediction using different machine learning methods. The most commonly used method for price prediction is the linear regression model. In our study, we examined the effectiveness of the linear regression model for used car price prediction. In our study, we applied the linear regression model on a data set that includes the features and price information of vehicles in Turkey for the year 2020. As a result, when we selected 1/3 of the data set as the test data, we observed that the R2 score for the prediction success of our model was 73%. More successful results can be obtained with different data sets or a more detailed data preprocessing.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 International Journal of Computational and Experimental Science and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.