Transforming E-Commerce with Intelligent Recommendation Systems: A Review of Current Trends in Machine Learning and Deep Learning

Authors

  • Prabhu Chinnasamy Walmart Global Tech

DOI:

https://doi.org/10.22399/ijcesen.1183

Keywords:

E-commerce, Intelligent Recommendation System, Machine learning, Deep Learning, Artificial Intelligence, Collaborative Filtering

Abstract

In the ever-changing realm of E-Commerce, it is essential for online businesses to comprehend and adjust to shifting consumer behaviour in order to achieve long-term success. In which, Intelligent Recommendation System (IRS) has gained familiarity by suggesting personalized information based on user preference and behaviours.  Hence, the review paper primarily aims to analyse significance of the intelligent recommendation system to transform ecommerce field, specifically enrich the user personalisation and satisfaction, and enhance revenue in business. Accordingly, the proposed survey is discussed the traditional system and AI-powered personalization system in ecommerce. AI-powered recommendation system utilize sophisticated algorithms to analyse extensive data, allowing for the provision of highly customized and relevant content, product recommendation, and user satisfaction. Besides, it examines future trends in AI integration within e-commerce, particularly advancements in Natural Language Processing (NLP) and visual search technologies, which are poised to further enrich ecommerce. The paper concludes with a look toward future directions for the integration of AI technologies in e-commerce, anticipating advancements in NLP and visual search capabilities, which promise to further enhance the online shopping experience. Overall, the findings of the article underscores the transformative impact of IRS on the e-commerce sector, advocating for their continued development in response to evolving market demands.

References

Sharma, R., Srivastva, S., Fatima, S. (2023). E-Commerce and Digital Transformation: Trends, Challenges, and Implications. International Journal For Multidisciplinary Research. 5(5). https://doi.org/10.36948/ijfmr.2023.v05i05.7128 DOI: https://doi.org/10.36948/ijfmr.2023.v05i05.7128

Asaithambi, S., Ravi, L., Devarajan, M., Almazyad, A. S., Xiong, G., & Mohamed, A. W. (2024). Enhancing enterprises trust mechanism through integrating blockchain technology into e-commerce platform for SMEs. Egyptian Informatics Journal. 25, 100444. https://doi.org/10.1016/j.eij.2024.100444 DOI: https://doi.org/10.1016/j.eij.2024.100444

Costa, P., & Rodrigues, H. (2023). The ever-changing business of e-commerce-net benefits while designing a new platform for small companies. Review of Managerial Science. 18(9);2507–2545. https://doi.org/10.1007/s11846-023-00681-6 DOI: https://doi.org/10.1007/s11846-023-00681-6

Vivek, V., Mahesh, T. R., Saravanan, C., & Vinay Kumar, K. (2022). A Novel Technique for User Decision Prediction and Assistance Using Machine Learning and NLP: A Model to Transform the E-commerce System. Big Data Management in Sensing. 61–76. https://doi.org/10.1201/9781003337355-5 DOI: https://doi.org/10.1201/9781003337355-5

Islek, I., & Oguducu, S. G. (2022). A hierarchical recommendation system for E-commerce using online user reviews. Electronic Commerce Research and Applications. 52, 101131. https://doi.org/10.1016/j.elerap.2022.101131 DOI: https://doi.org/10.1016/j.elerap.2022.101131

Vijayakumar, P., & Jagatheeshkumar, G. (2024). User’s learning capability aware E-content recommendation system for enhanced learning experience. Measurement: Sensors. 31, 100947. https://doi.org/10.1016/j.measen.2023.100947 DOI: https://doi.org/10.1016/j.measen.2023.100947

Latha, Y. M., & Rao, B. S. (2024). Amazon product recommendation system based on a modified convolutional neural network. ETRI Journal. 46(4);633–647. https://doi.org/10.4218/etrij.2023-0162 DOI: https://doi.org/10.4218/etrij.2023-0162

Mleih Al-Sbou, A., & Abd Rahim, N. H. (2023). An improved hybrid semi-stacked autoencoder for item-features of recommendation system (iHSARS). Indonesian Journal of Electrical Engineering and Computer Science. 30(1), 481. https://doi.org/10.11591/ijeecs.v30.i1.pp481-490 DOI: https://doi.org/10.11591/ijeecs.v30.i1.pp481-490

Tewari, B., Rautela, M., Sharma, S. K., & Garg, N. (2024). Revolutionizing recommendations: Exploring recent trends in deep learning for modern systems. Challenges in Information, Communication and Computing Technology. 443–447. https://doi.org/10.1201/9781003559092-223 DOI: https://doi.org/10.1201/9781003559092-223

Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science. 2(3). https://doi.org/10.1007/s42979-021-00592-x DOI: https://doi.org/10.1007/s42979-021-00592-x

Tapaskar, V., & Math, M. M. (2022). Deep recurrent Gaussian Nesterovs recommendation using multi-agent in social networks. Evolving Systems. 13(3), 435–452. https://doi.org/10.1007/s12530-022-09435-3 DOI: https://doi.org/10.1007/s12530-022-09435-3

Johnpaul, M., Miryala, R. S. B., Mazurek, M., Jayaprakashnarayana, G., & Miryala, R. K. (2024). Artificial Intelligence and Machine Learning in eCommerce. Strategic Innovations of AI and ML for E-Commerce Data Security. 31–58. https://doi.org/10.4018/979-8-3693-5718-7.ch002 DOI: https://doi.org/10.4018/979-8-3693-5718-7.ch002

A. Al-Ebrahim, M., Bunian, S., & A. Nour, A. (2023). Recent Machine-Learning-Driven Developments in E-Commerce: Current Challenges and Future Perspectives. Engineered Science. https://doi.org/10.30919/es1044 DOI: https://doi.org/10.30919/es1044

Loukili, M., Messaoudi, F., & Ghazi, M. E. (2023). Machine learning based recommender system for e-commerce. IAES International Journal of Artificial Intelligence (IJ-AI). 12(4), 1803. https://doi.org/10.11591/ijai.v12.i4.pp1803-1811 DOI: https://doi.org/10.11591/ijai.v12.i4.pp1803-1811

Ramshankar, N., & Joe Prathap, P. M. (2021). A novel recommendation system enabled by adaptive fuzzy aided sentiment classification for E-commerce sector using black hole-based grey wolf optimization. Sādhanā. 46(3). https://doi.org/10.1007/s12046-021-01631-2 DOI: https://doi.org/10.1007/s12046-021-01631-2

Tran, D. T., & Huh, J.-H. (2022). New machine learning model based on the time factor for e-commerce recommendation systems. The Journal of Supercomputing. 79(6);6756–6801. https://doi.org/10.1007/s11227-022-04909-2 DOI: https://doi.org/10.1007/s11227-022-04909-2

Gulzar, Y., Alwan, A. A., Abdullah, R. M., Abualkishik, A. Z., & Oumrani, M. (2023). OCA: Ordered Clustering-Based Algorithm for E-Commerce Recommendation System. Sustainability. 15(4), 2947. https://doi.org/10.3390/su15042947 DOI: https://doi.org/10.3390/su15042947

Patro, S. G. K., Mishra, B. K., Panda, S. K., Kumar, R., Long, H. V., & Taniar, D. (2022). Cold start aware hybrid recommender system approach for E-commerce users. Soft Computing. 27(4);2071–2091. https://doi.org/10.1007/s00500-022-07378-0 DOI: https://doi.org/10.1007/s00500-022-07378-0

Khaledian, N., Nazari, A., & Barkhan, M. (2025). CFCAI: improving collaborative filtering for solving cold start issues with clustering technique in the recommender systems. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-024-20579-z DOI: https://doi.org/10.1007/s11042-024-20579-z

Rajeshirke, S. S. (2023). Multi-objective recommender system for e-commerce using singular value decomposition (SVD) matrix factorization technique (MSc Research Project). National College of Ireland, Dublin. https://norma.ncirl.ie/7253/1/shubhamsunilrajeshirke.pdf

Zhao, Z., Fan, W., Li, J., Liu, Y., Mei, X., Wang, Y., Wen, Z., Wang, F., Zhao, X., Tang, J., & Li, Q. (2024). Recommender Systems in the Era of Large Language Models (LLMs). IEEE Transactions on Knowledge and Data Engineering. 36(11);6889–6907. https://doi.org/10.1109/tkde.2024.3392335 DOI: https://doi.org/10.1109/TKDE.2024.3392335

Latha, Y. M., & Rao, B. S. (2023). Product recommendation using enhanced convolutional neural network for e-commerce platform. Cluster Computing. 27(2);1639–1653. https://doi.org/10.1007/s10586-023-04053-3 DOI: https://doi.org/10.1007/s10586-023-04053-3

Salampasis, M., Katsalis, A., Siomos, T., Delianidi, M., Tektonidis, D., Christantonis, K., Kaplanoglou, P., Karaveli, I., Bourlis, C., & Diamantaras, K. (2023). A Flexible Session-Based Recommender System for e-Commerce. Applied Sciences. 13(5), 3347. https://doi.org/10.3390/app13053347 DOI: https://doi.org/10.3390/app13053347

Shah, S. T. U., Khan, F., Yamani, S., Alturki, R., Gazzawe, F., & Razzak, M. I. (2025). DSRS: DELIGHT sequential recommender system. Engineering Applications of Artificial Intelligence. 142, 109936. https://doi.org/10.1016/j.engappai.2024.109936 DOI: https://doi.org/10.1016/j.engappai.2024.109936

Shankar, A., Perumal, P., Subramanian, M., Ramu, N., Natesan, D., Kulkarni, V. R., & Stephan, T. (2023). An intelligent recommendation system in e-commerce using ensemble learning. Multimedia Tools and Applications. 83(16);48521–48537. https://doi.org/10.1007/s11042-023-17415-1 DOI: https://doi.org/10.1007/s11042-023-17415-1

Karabila, I., Darraz, N., El-Ansari, A., Alami, N., & El Mallahi, M. (2023). Enhancing Collaborative Filtering-Based Recommender System Using Sentiment Analysis. Future Internet. 15(7), 235. https://doi.org/10.3390/fi15070235 DOI: https://doi.org/10.3390/fi15070235

Shokrzadeh, Z., Feizi-Derakhshi, M.-R., Balafar, M.-A., & Bagherzadeh Mohasefi, J. (2024). Knowledge graph-based recommendation system enhanced by neural collaborative filtering and knowledge graph embedding. Ain Shams Engineering Journal. 15(1), 102263. https://doi.org/10.1016/j.asej.2023.102263 DOI: https://doi.org/10.1016/j.asej.2023.102263

Xu, K., Zhou, H., Zheng, H., Zhu, M., & Xin, Q. (2024). Intelligent classification and personalized recommendation of E-commerce products based on machine learning. Applied and Computational Engineering. 64(1);148–154. https://doi.org/10.54254/2755-2721/64/20241365 DOI: https://doi.org/10.54254/2755-2721/64/20241365

Zan, C. (2023). Development of e-commerce Big data model based on machine learning and user recommendation algorithm. International Journal of System Assurance Engineering and Management. https://doi.org/10.1007/s13198-023-02157-y DOI: https://doi.org/10.1007/s13198-023-02157-y

Shirkhani, S., Mokayed, H., Saini, R., & Chai, H. Y. (2023). Study of AI-Driven Fashion Recommender Systems. SN Computer Science. 4(5). https://doi.org/10.1007/s42979-023-01932-9 DOI: https://doi.org/10.1007/s42979-023-01932-9

Wang, S., Zhang, P., Wang, H., Yu, H., & Zhang, F. (2022). Detecting shilling groups in online recommender systems based on graph convolutional network. Information Processing & Management. 59(5), 103031. https://doi.org/10.1016/j.ipm.2022.103031 DOI: https://doi.org/10.1016/j.ipm.2022.103031

Shi, J., Shang, F., Zhou, S., Zhang, X., & Ping, G. (2024). Applications of Quantum Machine Learning in Large-Scale E-commerce Recommendation Systems: Enhancing Efficiency and Accuracy. Journal of Industrial Engineering and Applied Science. 2(4);90–103. https://doi.org/10.5281/zenodo.13117899

Fareed, A., Hassan, S., Belhaouari, S. B., & Halim, Z. (2023). A collaborative filtering recommendation framework utilizing social networks. Machine Learning with Applications. 14, 100495. https://doi.org/10.1016/j.mlwa.2023.100495 DOI: https://doi.org/10.1016/j.mlwa.2023.100495

Choudhary, C., Singh, I., & Kumar, M. (2023). SARWAS: Deep ensemble learning techniques for sentiment based recommendation system. Expert Systems with Applications. 216, 119420. https://doi.org/10.1016/j.eswa.2022.119420 DOI: https://doi.org/10.1016/j.eswa.2022.119420

Patil, P., Kadam, S. U., Aruna, E. R., More, A., M., B. R., & Rao, B. N. K. (2024). Recommendation System for E-Commerce Using Collaborative Filtering. Journal Européen Des Systèmes Automatisés. 57(04);1145–1153. https://doi.org/10.18280/jesa.570421 DOI: https://doi.org/10.18280/jesa.570421

Liu, J., Liu, C., Zhou, P., Ye, Q., Chong, D., Zhou, K., et al. (2023). LLMRec: Benchmarking Large Language Models on Recommendation Task. ArXiv. https://arxiv.org/abs/2308.12241

Li, M. (2024). Recommendation System Building based on CNN and TF-IDF Approaches. Highlights in Science, Engineering and Technology. 92;178–187. https://doi.org/10.54097/633gjj39 DOI: https://doi.org/10.54097/633gjj39

Messaoudi, F., & Loukili, M. (2024). E-commerce Personalized Recommendations: a Deep Neural Collaborative Filtering Approach. Operations Research Forum. 5(1). https://doi.org/10.1007/s43069-023-00286-5 DOI: https://doi.org/10.1007/s43069-023-00286-5

Deng, J., Wu, Q., Wang, S., Ye, J., Wang, P., & Du, M. (2024). A novel joint neural collaborative filtering incorporating rating reliability. Information Sciences. 665, 120406. https://doi.org/10.1016/j.ins.2024.120406 DOI: https://doi.org/10.1016/j.ins.2024.120406

Sharma, A., Patel, N., Gupta, R. (2022). Enhancing AI-Powered Recommendation Engines Using Collaborative Filtering and Neural Network-Based Algorithms. European Advanced AI Journal. 11(8).

Zhao, Z., Zhang, N., Xiong, J., Feng, M., Jiang, C., & Wang, X. (2024). Enhancing E-commerce Recommendations: Unveiling Insights from Customer Reviews with BERTFusionDNN. Journal of Theory and Practice of Engineering Science. 4(02);38–44. https://doi.org/10.53469/jtpes.2024.04(02).06 DOI: https://doi.org/10.53469/jtpes.2024.04(02).06

Xiang, Y., Yu, H., Gong, Y., Huo, S., & Zhu, M. (2024). Text understanding and generation using transformer models for intelligent e-commerce recommendations. Ninth International Symposium on Advances in Electrical, Electronics, and Computer Engineering (ISAEECE 2024). 179. https://doi.org/10.1117/12.3034062 DOI: https://doi.org/10.1117/12.3034062

Chandra, S., & Verma, S. (2023). Personalized Recommendation During Customer Shopping Journey. The Palgrave Handbook of Interactive Marketing. 729–752. https://doi.org/10.1007/978-3-031-14961-0_32 DOI: https://doi.org/10.1007/978-3-031-14961-0_32

Vidhya, V., Donthu, S., Veeran, L., Lakshmi, Y. S., Yadav, B. (2023). The intersection of AI and consumer behavior: Predictive models in modern marketing. Remittances Review. 8(4). https://remittancesreview.com/menu-script/index.php/remittances/article/view/907/475

Sherly Steffi, L., Subha, B., Kuriakose, A., Singh, J., Arunkumar, B., & Rajalakshmi, V. (2024). The Impact of AI-Driven Personalization on Consumer Behavior and Brand Engagement in Online Marketing. Harnessing AI, Machine Learning, and IoT for Intelligent Business. 485–492. https://doi.org/10.1007/978-3-031-67890-5_43 DOI: https://doi.org/10.1007/978-3-031-67890-5_43

Liu, T., & Zhu, Y. (2024). Design and Optimization of Intelligent Recommendation System Using Machine Learning. 2024 5th International Symposium on Computer Engineering and Intelligent Communications (ISCEIC). 153–159. https://doi.org/10.1109/isceic63613.2024.10810230 DOI: https://doi.org/10.1109/ISCEIC63613.2024.10810230

Addagarla, S. K., & Amalanathan, A. (2020). Probabilistic Unsupervised Machine Learning Approach for a Similar Image Recommender System for E-Commerce. Symmetry. 12(11), 1783. https://doi.org/10.3390/sym12111783 DOI: https://doi.org/10.3390/sym12111783

Bhuiyan, M. S. (2024). The Role of AI-Enhanced Personalization in Customer Experiences. Journal of Computer Science and Technology Studies. 6(1);162–169. https://doi.org/10.32996/jcsts.2024.6.1.17 DOI: https://doi.org/10.32996/jcsts.2024.6.1.17

Nguyen, T. (Kellan), & Hsu, P.-F. (2022). More Personalized, More Useful? Reinvestigating Recommendation Mechanisms in E-Commerce. International Journal of Electronic Commerc. 26(1);90–122. https://doi.org/10.1080/10864415.2021.2010006 DOI: https://doi.org/10.1080/10864415.2021.2010006

Mu, J. (2023). The Application and Effect of Intelligent Marketing Technology and Personalized Recommendation System in E-commerce. Frontiers in Computing and Intelligent Systems. 5(1);1–4. https://doi.org/10.54097/fcis.v5i1.11533 DOI: https://doi.org/10.54097/fcis.v5i1.11533

Zhang, Q., & Xiong, Y. (2024). Harnessing AI potential in E-Commerce: improving user engagement and sales through deep learning-based product recommendations. Current Psychology. 43(38);30379–30401. https://doi.org/10.1007/s12144-024-06649-3 DOI: https://doi.org/10.1007/s12144-024-06649-3

Raja, V., Kung, J. (2025). Predicting Customer Behavior in E-Commerce Using Machine Learning Algorithms: a Mathematical Approach. https://easychair.org/publications/preprint/894j/open

Potla, R. T., Pottla, V. K. (2024). AI-Powered Personalization in Salesforce: Enhancing Customer Engagement through Machine Learning Models. International Journal of Scientific Research and Management (IJSRM). 12(8);1388-1420. https://doi.org/10.18535/ijsrm DOI: https://doi.org/10.18535/ijsrm

Ma, D., Wang, Y., Ma, J., & Jin, Q. (2023). SGNR: A Social Graph Neural Network Based Interactive Recommendation Scheme for E-Commerce. Tsinghua Science and Technology. 28(4);786–798. https://doi.org/10.26599/tst.2022.9010050 DOI: https://doi.org/10.26599/TST.2022.9010050

Almahmood, R. J. K., & Tekerek, A. (2022). Issues and Solutions in Deep Learning-Enabled Recommendation Systems within the E-Commerce Field. Applied Sciences. 12(21), 11256. https://doi.org/10.3390/app122111256 DOI: https://doi.org/10.3390/app122111256

Samal, S., Kar, K., Taunk, S., & Patra, J. P. (2022). Artificial Intelligence-Based Approaches for Product Recommendation in E-Commerce. Empirical Research for Futuristic E-Commerce Systems. 53–70. https://doi.org/10.4018/978-1-6684-4969-1.ch003 DOI: https://doi.org/10.4018/978-1-6684-4969-1.ch003

Habil, S., El-Deeb, S., & El-Bassiouny, N. (2023). AI-Based Recommendation Systems: The Ultimate Solution for Market Prediction and Targeting. The Palgrave Handbook of Interactive Marketing. 683–704. https://doi.org/10.1007/978-3-031-14961-0_30 DOI: https://doi.org/10.1007/978-3-031-14961-0_30

Sharifbaev, A., Mozikov, M., Zaynidinov, H., & Makarov, I. (2024). Efficient Integration of Reinforcement Learning in Graph Neural Networks-Based Recommender Systems. IEEE Access. 12;189439–189448. https://doi.org/10.1109/access.2024.3516517 DOI: https://doi.org/10.1109/ACCESS.2024.3516517

Kugler, L. (2024). How Today’s Recommender Systems Use Machine Learning to Cater to Your Every Whim. Communications of the ACM. 67(8), 14–16. https://doi.org/10.1145/3673426 DOI: https://doi.org/10.1145/3673426

Ikhtiyorov, F. (2023) Navigating AI's potential in e-commerce: legal regulations, challenges, and key considerations. Agrobiotexnologiya va veterinariya tibbiyoti ilmiy jurnali. 2(5);41-49. https://sciencebox.uz/index.php/tibbiyot/article/view/7565/6965

Paz-Ruza, J., Alonso-Betanzos, A., Guijarro-Berdiñas, B., Cancela, B., & Eiras-Franco, C. (2024). Sustainable transparency on recommender systems: Bayesian ranking of images for explainability. Information Fusion, 111, 102497. https://doi.org/10.1016/j.inffus.2024.102497 DOI: https://doi.org/10.1016/j.inffus.2024.102497

Sorbán, K. (2021). Ethical and legal implications of using AI-powered recommendation systems in streaming services. Információs Társadalom. 21(2), 63. https://doi.org/10.22503/inftars.xxi.2021.2.5 DOI: https://doi.org/10.22503/inftars.XXI.2021.2.5

Deldjoo, Y., Nazary, F., Ramisa, A., McAuley, J., Pellegrini, G., Bellogin, A., & Noia, T. D. (2023). A Review of Modern Fashion Recommender Systems. ACM Computing Surveys. 56(4);1–37. https://doi.org/10.1145/3624733 DOI: https://doi.org/10.1145/3624733

Tahir Kidwai, U., Akhtar, N., Nadeem, M., & Alroobaea, R. S. (2024). Mitigating filter bubbles: Diverse and explainable recommender systems. Journal of Intelligent & Fuzzy Systems. 1–14. https://doi.org/10.3233/jifs-219416 DOI: https://doi.org/10.3233/JIFS-219416

Ukoba, K. & Jen, T. C. (2023). Thin films, atomic layer deposition, and 3D Printing: demystifying the concepts and their relevance in industry 4.0. CRC Press. DOI: https://doi.org/10.1201/9781003364481

Remolina, N., & Gurrea-Martinez, A. (2023). Artificial Intelligence in Finance: Challenges, opportunities and regulatory developments. https://doi.org/10.4337/9781803926179 DOI: https://doi.org/10.4337/9781803926179

Bourg, L., Chatzidimitris, T., Chatzigiannakis, I., Gavalas, D., Giannakopoulou, K., Kasapakis, V., et al. (2021). Enhancing shopping experiences in smart retailing. Journal of Ambient Intelligence and Humanized Computing. 14(12);15705–15723. https://doi.org/10.1007/s12652-020-02774-6 DOI: https://doi.org/10.1007/s12652-020-02774-6

Hamdan, A., Alareeni, B., Hamdan, R., & Dahlan, M. A. (2022). Incorporation of artificial intelligence, Big Data, and Internet of Things (IoT): an insight into the technological implementations in business success. Journal of Decision Systems, 33(2);195–198. https://doi.org/10.1080/12460125.2022.2143618 DOI: https://doi.org/10.1080/12460125.2022.2143618

Chodak, G. (2024). Artificial Intelligence in E-Commerce. The Future of E-Commerce. 187–233. https://doi.org/10.1007/978-3-031-55225-0_7 DOI: https://doi.org/10.1007/978-3-031-55225-0_7

Sagiraju, S., Mohanty, J. R., & Naik, A. (2025). Hyperparameter Tuning of Random Forest using Social Group Optimization Algorithm for Credit Card Fraud Detection in Banking Data. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.777 DOI: https://doi.org/10.22399/ijcesen.777

K. Tamilselvan, , M. N. S., A. Saranya, D. Abdul Jaleel, Er. Tatiraju V. Rajani Kanth, & S.D. Govardhan. (2025). Optimizing data processing in big data systems using hybrid machine learning techniques. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.936

Krishna Kumaar Ragothaman. (2025). Smart Distribution in E-Commerce: Harnessing Machine Learning and Deep Learning Approaches for Improved Logistics. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1157 DOI: https://doi.org/10.22399/ijcesen.1157

Downloads

Published

2025-03-17

How to Cite

Prabhu Chinnasamy. (2025). Transforming E-Commerce with Intelligent Recommendation Systems: A Review of Current Trends in Machine Learning and Deep Learning. International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.1183

Issue

Section

Review Article