Numerical investigation of perforated aluminum tubes with different types of geometrical discontinuities under bending
DOI:
https://doi.org/10.22399/ijcesen.2237Keywords:
Aluminum, Bending, Perforated tube, Hole shape, Finite element analysisAbstract
In this study, the effect of hole shape on the bending behavior of aluminum 6063-T5 tubes was investigated numerically. The effects of hole geometries in the form of circles, triangles, squares, hexagons, ellipses, and diamonds on the bending behavior of the tube structure were investigated by finite element analysis. As a result of the analysis, the tube structure with the highest load-carrying and energy-absorption capacity is the ellipse perforated tube. In terms of specific load carrying and specific energy absorption capacity, the ellipse perforated tube structure is again in first place. Compared to the non-perforated tube, the load carrying capacity has decreased by 13.6%, and the energy absorption capacity has decreased by 11%. The triangular perforated structure comes in second place. The square perforated tube is in last place.
References
[1] Abramowicz, W., & Jones, N. (1986). Dynamic axial crushing of circular tubes. International Journal of Impact Engineering, 4(4), 243–270. https://doi.org/10.1016/0734-743X(86)90011-4
[2] Hanssen, A. G., Langseth, M., & Hopperstad, O. S. (2000). Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. International Journal of Impact Engineering, 24(5), 475–507. https://doi.org/10.1016/S0734-743X(99)00121-0
[3] Langseth, M., Hopperstad, O. S., & Hanssen, A. G. (1999). Crashworthiness of aluminium extrusions: Experiments and numerical analyses. International Journal of Mechanical Sciences, 41(3), 677–694. https://doi.org/10.1016/S0020-7403(98)00063-7
[4] Mamalis, A. G., Manolakos, D. E., Demosthenous, G. A., & Ioannidis, M. B. (1997). On the response of thin-walled square tubes to dynamic lateral loading. International Journal of Mechanical Sciences, 39(9), 989–1004. https://doi.org/10.1016/S0020-7403(96)00097-0
[5] Thornton, P. H., & Magee, C. L. (1993). Crash energy management in automotive structures. International Journal of Impact Engineering, 13(3), 227–239. https://doi.org/10.1016/0734-743X(93)90034-X
[6] Abramowicz, W. (2003). Thin-walled structures as impact energy absorbers. Thin-Walled Structures, 41(2–3), 91–107. https://doi.org/10.1016/S0263-8231(02)00081-0
[7] Chen, W., Lu, G., & Yu, T. X. (2009). Bending collapse of thin-walled square and rectangular aluminum alloy tubes. Thin-Walled Structures, 47(6–7), 739–749. https://doi.org/10.1016/j.tws.2008.12.014
[8] Yin, H. P., Fang, H., & Zhang, Y. Y. (2013). Numerical simulation of the bending behavior of aluminum alloy thin-walled square tubes. Materials & Design, 45, 454–462. https://doi.org/10.1016/j.matdes.2012.09.034
[9] Reyes, A., & Langseth, M. (2002). Crushing of circular aluminium tubes under axial loading. International Journal of Mechanical Sciences, 44(9), 1965–1984. https://doi.org/10.1016/S0020-7403(01)00157-7
[10] Kim, Y. J., Lee, S. H., & Wierzbicki, T. (2012). Crashworthiness of perforated circular tubes under axial compression. Thin-Walled Structures, 58, 61–73. https://doi.org/10.1016/j.tws.2012.04.008
[11] Hwang, Y. M., Su, H. C., & Chen, Y. M. (2014). Energy absorption characteristics of cylindrical tubes with various pre-folded patterns. Materials & Design, 57, 317–326. https://doi.org/10.1016/j.matdes.2013.12.059
[12] Attard, M. M., & Hunt, G. W. (2008). Experimental investigation of plastic buckling in aluminum tubes under bending. Thin-Walled Structures, 46(12), 1411–1419. https://doi.org/10.1016/j.tws.2008.03.009
[13] Singace, A. A., & El-Sobky, H. (1997). Behavior of axially crushed tubes with different modes of perforation. Thin-Walled Structures, 28(1), 79–90. https://doi.org/10.1016/S0263-8231(96)00029-7
[14] Ma, G. W., & Zhang, X. Y. (2003). Modeling of perforated plates under blast loading. International Journal of Impact Engineering, 28(4), 405–422. https://doi.org/10.1016/S0734-743X(02)00129-6
[15] Li, Z., Fang, J., & Yang, X. (2016). Crashworthiness of axially crushed aluminum alloy circular tubes with multiple holes. Thin-Walled Structures, 100, 155–166. https://doi.org/10.1016/j.tws.2016.01.007
[16] Alavi Nia, A., & Hoseini, S. M. (2011). Experimental and numerical investigation on the energy absorption characteristics of thin-walled tubes with different hole patterns. Thin-Walled Structures, 49(12), 1491–1500. https://doi.org/10.1016/j.tws.2011.08.008
[17] Kim, H. S., Kim, H. J., & Park, J. S. (2012). Numerical investigation of crashworthiness characteristics of thin-walled tubes with various holes. Thin-Walled Structures, 61, 17–29. https://doi.org/10.1016/j.tws.2012.06.005
[18] Hwang, Y. M., & Lin, Y. C. (2014). Performance of pre-folded energy-absorbing tubes under axial impact. Materials & Design, 54, 79–89. https://doi.org/10.1016/j.matdes.2013.08.057
[19] Ramu, I., & Senthil, R. (2017). Crushing behavior of aluminum tubes with holes under axial compression. Materials Today: Proceedings, 4(8), 8740–8746. https://doi.org/10.1016/j.matpr.2017.07.218
[20] Hou, S., Li, Q., Long, S., Yang, X., & Li, W. (2007). Crashworthiness design for foam-filled thin-wall structures. Materials & Design, 28(3), 1359–1362. https://doi.org/10.1016/j.matdes.2005.12.003
[21] Karagiozova, D., & Alves, M. (2004). Buckling of circular shells under dynamic axial compression. International Journal of Solids and Structures, 41(11–12), 3213–3234. https://doi.org/10.1016/j.ijsolstr.2004.01.001
[22] Tai, Y. S., Chu, T. C., & Huang, M. W. (2010). The crashworthiness performance of aluminum foam-filled tubes under oblique impact loading. International Journal of Mechanical Sciences, 52(11), 1474–1485. https://doi.org/10.1016/j.ijmecsci.2010.07.009
[23] Yang, S. S., Chen, J. H., & Pan, Y. (2015). Dynamic axial crushing behavior of foam-filled multi-cell thin-walled aluminum structures. Composite Structures, 133, 1–11. https://doi.org/10.1016/j.compstruct.2015.07.052
[24] Zarei, H. R., & Kröger, M. (2008). Multiobjective crashworthiness optimization of circular aluminum tubes. International Journal of Mechanical Sciences, 50(4), 903–913. https://doi.org/10.1016/j.ijmecsci.2007.09.008
[25] Li, Q., Yang, X., & Xu, Y. (2005). Energy absorption of structures and materials. Applied Mechanics Reviews, 58(6), 389–404. https://doi.org/10.1115/1.1992527
[26] Zarei, H. R., & Kröger, M. (2006). A numerical method for crashworthiness design of structures. Thin-Walled Structures, 44(9), 939–947. https://doi.org/10.1016/j.tws.2006.01.002
[27] Boria, S., Belingardi, G., & Koricho, E. G. (2016). Energy absorption capability of CFRP composite crash boxes with triggers. Composite Structures, 154, 318–330. https://doi.org/10.1016/j.compstruct.2016.07.049
[28] Fang, H., Zhang, Y., & Li, H. (2018). Numerical simulation of irregular-shaped holes on crashworthiness of square tubes. International Journal of Mechanical Sciences, 149, 109–123. https://doi.org/10.1016/j.ijmecsci.2018.10.017
[29] Zhao, B., & Elnashai, A. S. (2002). Seismic fragility assessment of RC structures in mid-America. Mid-America Earthquake Center Report.
[30] Kim, Y. J., & Wierzbicki, T. (2001). Crushing behavior of thin-walled hexagonal tubes. International Journal of Mechanical Sciences, 43(9), 2091–2116. https://doi.org/10.1016/S0020-7403(00)00123-5
[31] Russel, B. P., & McGregor, J. J. (2008). Experimental and numerical analysis of foam-filled metal tubes under bending loads. International Journal of Impact Engineering, 35(10), 998–1009. https://doi.org/10.1016/j.ijimpeng.2008.03.002
[32] Børvik, T., Langseth, M., Hopperstad, O. S., & Malo, K. A. (2001). Ballistic penetration of steel plates. International Journal of Impact Engineering, 27(1), 19–35. https://doi.org/10.1016/S0734-743X(01)00032-6
[33] Hamouda, A. M. S., & Hashmi, M. S. J. (1998). Testing and modeling of square thin-walled tubes subjected to axial loading. Thin-Walled Structures, 32(1–3), 1–28. https://doi.org/10.1016/S0263-8231(98)00022-6
[34] Lin, Y. C., Li, L., & Chen, M. S. (2010). Effects of strain rate on the compressive behavior of 5052-H38 aluminum alloy thin-walled tubes. Materials Science and Engineering: A, 527(3), 709–715. https://doi.org/10.1016/j.msea.2009.09.037
[35] Zhang, X., Wang, Z., & Wang, G. (2007). Numerical simulation of dynamic behavior of aluminum tubes under axial loading. International Journal of Solids and Structures, 44(15), 5029–5049. https://doi.org/10.1016/j.ijsolstr.2006.12.021
[36] Zhang, Y. X., & Yu, T. X. (2009). Progressive folding of square tubes under combined bending and axial loading. Thin-Walled Structures, 47(7), 784–791. https://doi.org/10.1016/j.tws.2008.11.004
[37] Kim, H. S., Youn, B. D., & Park, S. W. (2008). Collapse behavior of foam-filled square tubes with multiple cells. International Journal of Mechanical Sciences, 50(10–11), 1510–1519. https://doi.org/10.1016/j.ijmecsci.2008.07.009
[38] Belingardi, G., Cavatorta, M. P., & Koricho, E. G. (2011). Experimental investigation of CFRP composite crash boxes. International Journal of Crashworthiness, 16(4), 411–425. https://doi.org/10.1080/13588265.2011.591282
[39] Hanssen, A. G., Langseth, M., & Hopperstad, O. S. (2001). Static crushing of square aluminum extrusions with aluminum foam filler. International Journal of Mechanical Sciences, 43(1), 153–176. https://doi.org/10.1016/S0020-7403(99)00119-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.