Analysis of the Effect of Solar Activity on the Magnetic Field of Dwarf Planets in Our Solar System

Authors

  • Shurooq Mahdi Ali Alazzawi Department of Geology, Faculty of Science, University of Kufa,

DOI:

https://doi.org/10.22399/ijcesen.2253

Keywords:

Dwarf Planets, Solar Activity, Magnetic Fields, Outer Solar System , Magnetohydrodynamics (MHD)

Abstract

This study investigates the effect of sun activity on the magnetic fields of dwarf planets in the outer solar system. Dwarf planets consisting of Pluto, Eris, Haumea, and Makemake are remote, icy bodies with poorly understood magnetic properties. Solar activity, inclusive of solar wind, flares, and coronal mass ejections, performs a large role in shaping the distance surroundings spherical these objects. However, the interaction between solar pastime and the magnetic fields of dwarf planets remains in large part unexplored. This study aims to address this gap using analysis of observational data from space missions such as New Horizons and solar data from satellites including SOHO and the Parker Solar Probe. Using agnetohydrodynamic (MHD) modeling, the study will simulate the interactions among sun wind and the magnetic fields of dwarf planets, predicting variations and figuring out patterns. The results will contribute to the knowledge of the magnetic environments of these distant objects and their responses to solar phenomena. In addition, the observations will provide insights into the broader impacts on planetary age, space climate, and future exploration missions to the outer solar system. By bridging the gap between solar physics and planetary technology, this study seeks to advance our knowledge of the dynamic interactions in the solar system.

References

[1] Brown, M. E. (2008). The solar system beyond Neptune. Annual Review of Astronomy and Astrophysics, 46, 1–30.

[2] Stern, S. A., Bagenal, F., Ennico, K., Gladstone, G. R., Grundy, W. M., McKinnon, W. B., ... Weaver, H. A. (2015). The Pluto system: Initial results from its exploration by New Horizons. Science, 350(6258).

[3] Ortiz, J. L., Santos-Sanz, P., Sicardy, B., Benedetti-Rossi, G., Braga-Ribas, F., Duffard, R., ... Morales, N. (2015). The size, shape, and albedo of dwarf planet Haumea. Astronomy & Astrophysics, 576.

[4] Russell, C. T., Luhmann, J. G., & Strangeway, R. J. (2010). Planetary magnetospheres. Space Science Reviews, 152, 1–4.

[5] Bagenal, F., McComas, D. J., Young, D. T., & Crary, F. J. (2016). Pluto’s interaction with the solar wind. Journal of Geophysical Research: Space Physics, 121, 4237–4254.

[6] Barr, A. C., & McKinnon, W. B. (2007). Convection in Ice I shells and mantles with self-consistent grain size. Journal of Geophysical Research: Planets, 112.

[7] Parker, E. N. (1958). Dynamics of the interplanetary gas and magnetic fields. The Astrophysical Journal, 128, 664–676.

[8] Gosling, J. T. (1986). Coronal mass ejections and magnetic flux ropes in interplanetary space. Physics of the Sun, 2, 343–364.

[9] Kivelson, M. G., Khurana, K. K., Russell, C. T., Volwerk, M., Walker, R. J., & Zimmer, C. (2000). Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa. Science, 289, 1340–1343.

[10] Khurana, K. K., Kivelson, M. G., Stevenson, D. J., Schubert, G., Russell, C. T., Walker, R. J., & Polanskey, C. (1997). The magnetic field and magnetosphere of Ganymede. Geophysical Research Letters, 24, 2155–2158.

[11] Kivelson, M. G., Khurana, K. K., & Volwerk, M. (1997). Europa’s magnetic signature: Report from Galileo’s pass on 19 December 1996. Science, 276, 1239–1241.

[12] Stevenson, D. J. (1983). Planetary magnetic fields. Reports on Progress in Physics, 46, 555–620.

[13] Brown, M. E., Schaller, E. L., & Fraser, W. C. (2013). Hubble Space Telescope observations of dwarf planets in the Kuiper Belt. The Astronomical Journal, 145(4).

[14] Riley, P., Linker, J. A., Mikić, Z., Lionello, R., & Odstrčil, D. (2018). SOHO and Parker Solar Probe: Advancements in solar wind observations. Space Science Reviews, 214(1).

[15] NOAA Space Weather Prediction Center. (2023). Solar flare and sunspot data archive. Retrieved from https://www.swpc.noaa.gov

[16] Russell, C. T., Luhmann, J. G., & Strangeway, R. J. (2006). Fundamentals of magnetohydrodynamics. Cambridge: Cambridge University Press.

[17] Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., & Ferrari, A. (2007). PLUTO: A numerical code for computational astrophysics. Astrophysical Journal Supplement Series, 170(1).

[18] Gosling, J. T., McComas, D. J., Phillips, J. L., & Bame, S. J. (1991). Correlation between solar wind speed and geomagnetic activity. Journal of Geophysical Research, 96(A5).

[19] Petrinec, S. M., & Russell, C. T. (1993). Regression analysis of solar wind–magnetosphere coupling. Geophysical Research Letters, 20(23).

[20] Leamon, R. J., Wing, S., Johnson, J. R., & Newell, P. T. (2020). Uncertainty quantification in space weather models. Space Weather, 18(7).

[21] Barr, C., & McKinnon, W. B. (2007). Convection in Ice I shells and mantles with self-consistent grain size. Journal of Geophysical Research: Planets, 112.

[22] Russell, C. T., Luhmann, J. G., & Strangeway, R. J. (2010). Planetary magnetospheres. Space Science Reviews, 152, 1–4.

[23] Gosling, J. T. (1986). Coronal mass ejections and magnetic flux ropes in interplanetary space. Physics of the Sun, 2, 343–364.

[24] Bagenal, F., McComas, D. J., Young, D. T., & Crary, F. J. (2016). Pluto’s interaction with the solar wind. Journal of Geophysical Research: Space Physics, 121, 4237–4254.

[25] Petrinec, S. M., & Russell, C. T. (1993). Regression analysis of solar wind–magnetosphere coupling. Geophysical Research Letters, 20(23).

[26] Stern, S. A., Bagenal, F., Ennico, K., Gladstone, G. R., Grundy, W. M., McKinnon, W. B., ... Weaver, H. A. (2015). The Pluto system: Initial results from its exploration by New Horizons. Science, 350(6258).

[27] Leamon, R. J., Wing, S., Johnson, J. R., & Newell, P. T. (2020). Uncertainty quantification in space weather models. Space Weather, 18(7).

[28] Kivelson, M. G., Khurana, K. K., Russell, C. T., Volwerk, M., Walker, R. J., & Zimmer, C. (2000). Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa. Science, 289, 1340–1343.

Downloads

Published

2025-05-26

How to Cite

Shurooq Mahdi Ali Alazzawi. (2025). Analysis of the Effect of Solar Activity on the Magnetic Field of Dwarf Planets in Our Solar System. International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.2253

Issue

Section

Research Article