Energy Consumption in Wireless Sensor Networks Using Fruit Fly and Ant Colony Optimization Algorithms in Heterogeneous Environments

Authors

  • Ayush Sharma Guru kashi university Bhatinda
  • Sunny Arora

DOI:

https://doi.org/10.22399/ijcesen.3132

Keywords:

Fruit Fly, Ant Colony, BOA, LEACH, Path Optimization, Clustering

Abstract

WSNs (Wireless sensor networks) play an important role in sensing environmental conditions in far-flung areas. However, their energy usage remains a crucial issue, affecting the network's lifetime and coverage area. Clustering has emerged as an efficient strategy to prolong sensor network lifespan, and the Fruit Fly Algorithm (FFA) and Ant Colony Optimization (ACO) are promising techniques for cluster formation and efficient path establishment, respectively. In this study, we propose an innovative approach that combines FFA for cluster formation and ACO for path establishment. This novel algorithm is implemented in MATLAB and evaluated in both homogeneous and heterogeneous environments. We compare our proposed algorithm with the Biogeography-Based Optimization Algorithm (BOA) and the LEACH (Low Energy Adaptive Clustering Hierarchy) algorithm. Our findings show that the proposed algorithm significantly outperforms both BOA and LEACH as per the network longevity and coverage area, particularly in heterogeneous environments.

References

[1] Patil, A. G., Singla, C. R., & Rajankar, O. (2022). Design of fuzzy logic clustering algorithm for energy efficiency and security in WSN’s. In 2022 2nd Asian Conference on Innovation in Technology (ASIANCON) (pp. 1–6). IEEE. https://doi.org/10.1109/ASIANCON55314.2022.9909343 DOI: https://doi.org/10.1109/ASIANCON55314.2022.9909343

[2] Ramya, G., Nagarajan, R., & Kannadhasan, S. (2021). Energy efficient wireless sensor networks using LEACH network. In 2021 International Conference on Advances in Technology, Management & Education (ICATME) (pp. 83–87). IEEE. https://doi.org/10.1109/ICATME50232.2021.9732759 DOI: https://doi.org/10.1109/ICATME50232.2021.9732759

[3] Sansoy, M., Buttar, A. S., & Goyal, R. (2020). Empowering wireless sensor networks with RF energy harvesting. In 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 273–277). IEEE. https://doi.org/10.1109/SPIN48934.2020.9071376 DOI: https://doi.org/10.1109/SPIN48934.2020.9071376

[4] Singh, M. K., Saxena, D., Rai, A., & Kushwaha, D. (2023). Energy management techniques of wireless sensor networks for Internet of Things applications. In 2023 International Conference on IoT, Communication and Automation Technology (ICICAT) (pp. 1–6). IEEE. https://doi.org/10.1109/ICICAT57735.2023.10263766 DOI: https://doi.org/10.1109/ICICAT57735.2023.10263766

[5] Khalifeh, A. F., Abid, H., & Darabkh, K. A. (2020). Double mobility WSN: Exploiting the mobility of sink and cluster head nodes for better WSN energy preservation and lifetime. In 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) (pp. 1–4). IEEE. https://doi.org/10.1109/IEMTRONICS51293.2020.9216449 DOI: https://doi.org/10.1109/IEMTRONICS51293.2020.9216449

[6] Abdul-Qawy, A. S. H., Nasser, A. B., Guroob, A. H., Saad, A.-M. H. Y., Alduais, N. A. M., & Khatri, N. (2021). TEMSEP: Threshold-oriented and energy-harvesting enabled multilevel SEP protocol for improving energy-efficiency of heterogeneous WSNs. IEEE Access, 9, 154975–155002. https://doi.org/10.1109/ACCESS.2021.3128507

[7] Maurya, S., & Jain, V. K. (2018). Enhanced EECP: Enhanced energy efficient coverage preserving protocol for heterogeneous wireless sensor networks. In 2018 Conference on Information and Communication Technology (CICT) (pp. 1–5). IEEE. https://doi.org/10.1109/INFOCOMTECH.2018.8722411 DOI: https://doi.org/10.1109/INFOCOMTECH.2018.8722411

[8] Babu, V. S., Kumar, P., Balasubadra, K., & Dineshkumar, T. (2022). Link correlation procedure for improving energy efficiency in homogeneous WSN. In 2022 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS) (pp. 1–4). IEEE. https://doi.org/10.1109/ICPECTS56089.2022.10047771 DOI: https://doi.org/10.1109/ICPECTS56089.2022.10047771

[9] Hassan, A. A.-H., Shah, W. M., Habeb, A.-H. H., Othman, M. F. I., & Al-Mhiqani, M. N. (2020). An improved energy-efficient clustering protocol to prolong the lifetime of the WSN-based IoT. IEEE Access, 8, 200500–200517. https://doi.org/10.1109/ACCESS.2020.3035624 DOI: https://doi.org/10.1109/ACCESS.2020.3035624

[10] G. R., A., & Gowrishankar. (2018). An energy aware routing mechanism in WSNs using PSO and GSO algorithm. In 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 7–12). IEEE. https://doi.org/10.1109/SPIN.2018.8474140 DOI: https://doi.org/10.1109/SPIN.2018.8474140

[11] Panchal, A., & Singh, R. K. (2019). REHR: Residual Energy based Hybrid Routing Protocol for Wireless Sensor Networks. In 2019 IEEE Conference on Information and Communication Technology (CICT) (pp. 1–5). IEEE. https://doi.org/10.1109/CICT48419.2019.9066144 DOI: https://doi.org/10.1109/CICT48419.2019.9066144

[12] Sankaran, K. S., Vasudevan, N., & Nagarajan, V. (2020). Data-Centric Routing in WSN for Energy Conservation using Directed Diffusion. In 2020 International Conference on Communication and Signal Processing (ICCSP) (pp. 1414–1417). IEEE. https://doi.org/10.1109/ICCSP48568.2020.9182169 DOI: https://doi.org/10.1109/ICCSP48568.2020.9182169

[13] Amirinia, H., & Liscano, R. (2020). Optimized Application Driven Scheduling for Clustered WSN. In 2020 International Symposium on Networks, Computers and Communications (ISNCC) (pp. 1–6). IEEE. https://doi.org/10.1109/ISNCC49221.2020.9297230 DOI: https://doi.org/10.1109/ISNCC49221.2020.9297230

[14] Azzouz, I., Boussaid, B., Zouinkhi, A., & Abdelkrim, M. N. (2022). Energy-Aware Cluster Head Selection Protocol with Balanced Fuzzy C-Mean Clustering in WSN. In 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD) (pp. 1534–1539). IEEE. https://doi.org/10.1109/SSD54932.2022.9955909 DOI: https://doi.org/10.1109/SSD54932.2022.9955909

[15] Chamanian, S., Baghaee, S., Uluşan, H., Zorlu, Ö., Uysal-Biyikoglu, E., & Külah, H. (2019). Implementation of Energy-Neutral Operation on Vibration Energy Harvesting WSN. IEEE Sensors Journal, 19(8), 3092–3099. https://doi.org/10.1109/JSEN.2019.2890902 DOI: https://doi.org/10.1109/JSEN.2019.2890902

[16] Dhillon, H. S., Kumar, K., & Chawla, P. (2023). A Detailed Investigation of Wireless Sensor Network Energy Harvesting Schemes to Maximize Lifetime of Sensor Nodes. In 2023 3rd International Conference on Intelligent Communication and Computational Techniques (ICCT) (pp. 1–7). IEEE. https://doi.org/10.1109/ICCT56969.2023.10075842 DOI: https://doi.org/10.1109/ICCT56969.2023.10075842

[17] Abdul-Qawy, A. S. H., Nasser, A. B., Guroob, A. H., Saad, A.-M. H. Y., Alduais, N. A. M., & Khatri, N. (2021). TEMSEP: Threshold-Oriented and Energy-Harvesting Enabled Multilevel SEP Protocol for Improving Energy-Efficiency of Heterogeneous WSNs. IEEE Access, 9, 154975–155002. https://doi.org/10.1109/ACCESS.2021.3128507 DOI: https://doi.org/10.1109/ACCESS.2021.3128507

[18] Tan, N. D., & Nguyen, V.-H. (2023). EE-TLT: Energy-efficient routing protocol using two-level tree-based clustering in wireless sensor network. Journal of Communications and Networks, 25(6), 734–749. https://doi.org/10.23919/JCN.2023.000038 DOI: https://doi.org/10.23919/JCN.2023.000038

[19] Zhang, H., Zhang, M., & Yang, J. (2024). An energy consumption optimization strategy for Wireless Sensor Networks via multi-objective algorithm. Journal of King Saud University - Computer and Information Sciences, 34(10), 6371–6379. https://doi.org/10.1016/j.jksuci.2024.101919 DOI: https://doi.org/10.1016/j.jksuci.2024.101919

[20] Saoud, B., Shayea, I., & El-Saleh, A. A. (2023). New scheme of WSN routing to ensure data communication between sensor nodes based on energy warning. Alexandria Engineering Journal, 80, 397–407. https://doi.org/10.1016/j.aej.2023.08.058 DOI: https://doi.org/10.1016/j.aej.2023.08.058

[21] . Hossan, A., & Choudhury, P. K. (2022). DE-SEP: Distance and Energy Aware Stable Election Routing Protocol for Heterogeneous Wireless Sensor Network. IEEE Access, 10, 55726–55738. https://doi.org/10.1109/ACCESS.2022.3177190 DOI: https://doi.org/10.1109/ACCESS.2022.3177190

[22] Rhesa, M. J., & Revathi, S. (2024). DBKNN and Radial-ANFIS Model for Energy Efficient Wireless Sensor Network. IEEE Access, 12, 15917–15929. https://doi.org/10.1109/ACCESS.2024.3358196 DOI: https://doi.org/10.1109/ACCESS.2024.3358196

[23] Rani, S. S., & Sankar, K. S. (2023). Improved buffalo optimized deep feed forward neural learning based multipath routing for energy efficient data aggregation in WSN. Measurement: Sensors, 27, 963–970. https://doi.org/10.1016/j.measen.2022.100662 DOI: https://doi.org/10.1016/j.measen.2022.100662

[24] Meenakshi, N., Karthikeyan, S., Kumar, M. P., & Suresh, A. (2024). Efficient Communication in Wireless Sensor Networks Using Optimized Energy Efficient Engroove Leach Clustering Protocol. Tsinghua Science and Technology, 29(4), 985–1001. https://doi.org/10.26599/TST.2023.9010056 DOI: https://doi.org/10.26599/TST.2023.9010056

[25] Pandiyaraju, V., Ganapathy, S., & Kannan, A. (2023). An optimal energy utilization model for precision agriculture in WSNs using multi-objective clustering and deep learning. Journal of King Saud University - Computer and Information Sciences, 35(10), 47–53. https://doi.org/10.1016/j.jksuci.2023.101803 DOI: https://doi.org/10.1016/j.jksuci.2023.101803

[26] Reyes, J., García, F., Lárraga, M. E., Gómez, J., & Orozco-Barbosa, L. (2022). Game of Sensors: An Energy-Efficient Method to Enhance Network Lifetime in Wireless Sensor Networks Using the Game of Life Cellular Automaton. IEEE Access, 10, 129687–129701. https://doi.org/10.1109/ACCESS.2022.3228585 DOI: https://doi.org/10.1109/ACCESS.2022.3228585

Downloads

Published

2025-07-24

How to Cite

Sharma, A., & Sunny Arora. (2025). Energy Consumption in Wireless Sensor Networks Using Fruit Fly and Ant Colony Optimization Algorithms in Heterogeneous Environments. International Journal of Computational and Experimental Science and Engineering, 11(3). https://doi.org/10.22399/ijcesen.3132

Issue

Section

Research Article