Classification of Intensive-less Intensive and Related-Unrelated TasksTasks
DOI:
https://doi.org/10.22399/ijcesen.328Keywords:
Classification, EEG, Continuous Wavelet Transform, k-nearest NeighborAbstract
This study investigates the classification of electrical brain activity during intensive-less intensive and related-unrelated tasks. EEG signals were collected from 20 physically and mentally healthy university students (15 males, 5 females) residing in Adana and Hatay, Turkey, through 14 channels. Continuous Wavelet Transform analysis was applied for feature extraction. Subsequently, subject-dependent and subject-independent classifications were performed using the k-nearest Neighbor algorithm. In subject-dependent classification, the accuracy range for intensive-less intensive tasks varied between 77.6% and 89.8%, while the range for related-unrelated tasks was between 73.2% and 88%. Subject-independent classification yielded an accuracy of 79.2% for intensive-less intensive tasks and 77.5% for related–unrelated tasks.
References
Mayer-Kress, G., & Layne, S. P. (1986). Dimensionality of the human electroencephalogram (No. LA-UR-86-1664; CONF-8604203-1). Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
Savaş, S., Topaloğlu, N., & Yılmaz, M. (2012). Data mining and application examples in Turkey. Istanb. Commer. Univ. J. Sci, 11, 1-23.
Lai, C. C., & Tsai, C. C. (2010). Digital image watermarking using discrete wavelet transform and singular value decomposition. IEEE Transactions on instrumentation and measurement, 59(11), 3060-3063. DOI: https://doi.org/10.1109/TIM.2010.2066770
Martis, R. J., Acharya, U. R., & Min, L. C. (2013). ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomedical Signal Processing and Control, 8(5), 437-448. DOI: https://doi.org/10.1016/j.bspc.2013.01.005
Almanza-Conejo, O., Almanza-Ojeda, D. L., Contreras-Hernandez, J. L., & Ibarra-Manzano, M. A. (2023). Emotion recognition in EEG signals using the continuous wavelet transform and CNNs. Neural Computing and Applications, 35(2), 1409-1422. DOI: https://doi.org/10.1007/s00521-022-07843-9
Salyers, J. B., Dong, Y., & Gai, Y. (2018). Continuous wavelet transform for decoding finger movements from single-channel EEG. IEEE Transactions on Biomedical Engineering, 66(6), 1588-1597. DOI: https://doi.org/10.1109/TBME.2018.2876068
Eraldemir, S. G., Arslan, M. T., Yıldırım, E., & Koç, F. (2019). The effect of the environment on brain activity during problem solving. The Journal of Cognitive Systems, 4(2), 34-37.
Mao, W. L., Fathurrahman, H. I. K., Lee, Y., & Chang, T. W. (2020). EEG dataset classification using CNN method. In Journal of physics: conference series (Vol. 1456, No. 1, p. 012017). IOP Publishing. DOI: https://doi.org/10.1088/1742-6596/1456/1/012017
Shukla, R., Kumar, B., Gaurav, G., Singh, G., & Sahani, A. K. (2022). Epileptic seizure detection using continuous wavelet transform and deep neural networks. In Sensing Technology: Proceedings of ICST 2022 (pp. 291-300). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-98886-9_23
Kottaimalai, R., Rajasekaran, M. P., Selvam, V., & Kannapiran, B. (2013, March). EEG signal classification using principal component analysis with neural network in brain computer interface applications. In 2013 IEEE international conference on emerging trends in computing, communication and nanotechnology (ICECCN) (pp. 227-231). IEEE. DOI: https://doi.org/10.1109/ICE-CCN.2013.6528498
Amin, H. U., Malik, A. S., Ahmad, R. F., Badruddin, N., Kamel, N., Hussain, M., & Chooi, W. T. (2015). Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australasian physical & engineering sciences in medicine, 38, 139-149. DOI: https://doi.org/10.1007/s13246-015-0333-x
Bergil, E., Oral, C., & Ergül, E. U. (2023). Classification of arithmetic mental task performances using EEG and ECG signals. The Journal of Supercomputing, 79(14), 15535-15547. DOI: https://doi.org/10.1007/s11227-023-05294-0
Ouyang, T., & Lu, H. T. (2010, April). Vigilance analysis based on continuous wavelet transform of eeg signals. In 2010 International Conference on Biomedical Engineering and Computer Science (pp. 1-4). IEEE. DOI: https://doi.org/10.1109/ICBECS.2010.5462289
Darvishi, S., & Al-Ani, A. (2007, August). Brain-computer interface analysis using continuous wavelet transform and adaptive neuro-fuzzy classifier. In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3220-3223). IEEE. DOI: https://doi.org/10.1109/IEMBS.2007.4353015
Avanzo, C. D., Tarantino, V., Bisiacchi, P., & Sparacino, G. (2009). A wavelet methodology for EEG time-frequency analysis in a time discrimination task. International Journal of Bioelectromagnetism, 11(4), 185-188.
Yu, H., Lu, H., Ouyang, T., Liu, H., & Lu, B. L. (2010, August). Vigilance detection based on sparse representation of EEG. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (pp. 2439-2442). IEEE.
Sitnikova, E., Hramov, A. E., Koronovsky, A. A., & van Luijtelaar, G. (2009). Sleep spindles and spike–wave discharges in EEG: their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis. Journal of neuroscience methods, 180(2), 304-316. DOI: https://doi.org/10.1016/j.jneumeth.2009.04.006
Samar, V. J., Bopardikar, A., Rao, R., & Swartz, K. (1999). Wavelet analysis of neuroelectric waveforms: a conceptual tutorial. Brain and language, 66(1), 7-60. DOI: https://doi.org/10.1006/brln.1998.2024
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27. DOI: https://doi.org/10.1109/TIT.1967.1053964
Arslan, M. T., Eraldemir, S. G., & Yıldırım, E. (2017). Subject-dependent and subject-independent classification of mental arithmetic and silent reading tasks. International Journal of Engineering Research and Development, 9(3), 186-195. DOI: https://doi.org/10.29137/umagd.348871
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.