Microstructure properties of welded S420MC dual phase steel

Authors

  • Adnan Çalık
  • Nazım Uçar sdu

DOI:

https://doi.org/10.22399/ijcesen.336

Keywords:

Dual phase steel, resistance spot welding, martensite, crack, weld metal

Abstract

In this study, the weldability and microstructure properties of S420MC dual phase (DP) steel joints fabricated by the resistance spot welding method (RSW) were investigated. The microstructures of the welds were examined by SEM and optical microscopy. The results showed that the microstructure of the weld metal region completely transformed into the ferrite phase, and deep and wide cracks occurred in this region and heat-affected zone. It was concluded that the RSW method should not be recommended for welding DP steel.

References

Krajewski, S. and Nowacki, J., (2014). Dual-phase steels microstructure and properties consideration based on artificial intelligence techniques, Arch. Civil Mech. Eng, 14; 278–286. https://doi.org/10.5781/JWJ.2014.32.1.22

Akman, AZ., Akyıldız, Y. and yamanoğlu, R., (2023). Effect of Intercritical Annealing on the Properties of Dual Phase Steel via Finite Element Method, SDU J Nat Appl Sci, 27; 103-106. https://doi.org/10.5781/JWJ.2014.32.1.22

Lai, Q., Bouaziz, O., Gouné, M., Perlade, A., Bréchet, Y. and Pardoen. T., (2015). Microstructure refinement of dual-phase steels with 3.5 wt% Mn: Influence on plastic and fracture behavior, Mater. sci. eng. A, 638; 78-89. https://doi.org/10.5781/JWJ.2014.32.1.22

Kulakov, M., Poole, W. J. and Militzer, M., (2014). A Microstructure evolution model for intercritical annealing of low-carbon dual-phasesteel,

ISIJ International, 54; 2627-2636.

https://doi.org/10.5781/JWJ.2014.32.1.22

Ayres, J., Penneya, D., Evans, P. and Underhill, R., (2022). Effect of intercritical annealing on the mechanical properties of dual-phase steel, Ironmakıng and steelmaking, 49; 821–827.

Tuncel, O., Aydin, H. and Cetin, S., (2019). Pulsed Nd:YAG laser welding of similar and dissimilar DP steel sheets, Alternative Energy Sources, Mater. Technol (AESMT’19), 1; 109 – 110.

Salamci, E. and Kabakcı, F., (2011). Çift fazlı çeliğin çekme özelliklerine mikroyapının etkisi, J. Fac. Eng. Arch. Gazi Univ., 26; 263-272.

Chandiran, E., Kamikawa, N., Sato, Y., Miyamoto, G. and Furuhara, T., (2021). Improvement of Strength–Ductility Balance by the Simultaneous Increase in Ferrite and Martensite Strength in Dual-Phase Steels, Metall Mater Trans A, 52, 5394–5408. https://doi.org/10.5781/JWJ.2014.32.1.22

Kamikawa, N., Hirohashi, M., Sato, Y., Chandiran, E., Miyamoto, G. and Furuhara, T., (2015). Tensile Behavior of Ferrite-martensite Dual Phase Steels with Nano-precipitation of Vanadium Carbides, ISIJ International, 55; 1781-1790.

Shiraiwa, T., Kato, S., Briffod, F. and Enoki, M., (2022). Exploration of outliers in strength–ductility relationship of dual-phase steels, Sci. technol. adv. material, Meth, 2; 175–197. https://doi.org/10.5781/JWJ.2014.32.1.22

Granbom, Y., Structure and mechanical properties of dual phase steels, An experimental and theoretical analysis, PhD thesis, Royal Institute of Technology School of Industrial Engineering and Management Materials Science and Engineering Division of Mechanical Metallurgy SE-100 44, Sweden, 2010.

Vermaa, R. P. and Lilab, M. K., (2021). A short review on aluminium alloys and welding in structural applications, Mater. Today Proc, 46; 10687–10691. https://doi.org/10.5781/JWJ.2014.32.1.22

Cevik, B., (2018). Analysis of Welding Groove Configurations on Strength of S275 Structural Steel Welded by FCAW, J Polytech, 21; 489-495.

https://doi.org/10.5781/JWJ.2014.32.1.22

Delzendehrooy F., Akhavan-Safar A., Barbosa A. O., Beygi R., Cardoso D., Carbas R. J. C, Marques E.A.S. and da Silva L.F.M., (2022). A comprehensive review on structural joining techniques in the marine industry, Compos Struct, 289; 115490.

Kuril A. A., Ram G. D. J. and Bakshi S. R., (2009). Microstructure and mechanical properties of keyhole plasma arc welded dual phase steel DP600, J. Mater. Process. Technol., 270; 28–36.

https://doi.org/10.5781/JWJ.2014.32.1.22

Buranapunviwat, K. and Sojiphan, K., (2021).Destructive testing and hardness measurement of resistance stud welded joints of ASTM A36 steel, Mater. Today Proc, 47; 3565–3569. https://doi.org/10.5781/JWJ.2014.32.1.22

Örenler, A., Zırh çeliklerinin kaynak kabiliyetinin incelenmesi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans tezi, 2018.

Ata, F., Calik, A. and Ucar, N., (2022) Investigation on the microstructure and mechanical properties of 33 ASTM A131 steel manufactured by different welding methods, Adv. mater. sci. eng., 22; 32-40. https://doi.org/10.5781/JWJ.2014.32.1.22

Aytekin, C., Calik, N and Uvar, N., (2020) A Study on Mechanical Properties of Dissimilar Steels Welded with Electric Arc Welding, SDUFASJS,15; 124-129. https://doi.org/10.29233/sdufeffd.690392

Bayraktar, E., Kaplan, D. and Grumbach, M., (2044). Application of impact tensile testing to spot welded sheets, J. Mater. Process. Technol., 153-154;80-86.

https://doi.org/10.5781/JWJ.2014.32.1.22

Wan, X., Wang, Y. and Fang, C., (2014). Welding Defects Occurrence and Their Effects on Weld Quality in Resistance Spot Welding of AHSS Steel, ISIJ International, 54; 1883–1889. https://doi.org/10.5781/JWJ.2014.32.1.22

Sedmak, A., Doncheva, E., Medjo, B., Rakin, M., Milosevic, N. and Radu, D..(2023). Crack Size and Undermatching Effects on Fracture Behavior of a Welded Joint, Materials,16; 4858. https://doi.org/10.5781/JWJ.2014.32.1.22

Wintjes, E., DiGiovanni, C., He, L.,Biro, E. and Zhou, N. Y., (2019). Quantifying the link between crack distribution and resistance spot weld strength reduction in liquid metal embrittlement susceptible steels, Weld World , 63; 807–814. https://doi.org/10.5781/JWJ.2014.32.1.22

Rajshekhar, B. A., Ramakrishna, H. V. And Musalammagri, N., (2016). A Study of Load Carrying Capacity of cracked Weld Joint using Finite Element Analysis, IJRE, 3; 27-30.

Nicoletto, G., Collini, L., Konečná, R. and Bujnová, P., (2005). Strain heterogeneity and damage localization in nodular cast iron microstructures, Mater Sci Forum, 482; 255-258.

Zain, N. a. M., Daud, R., Basaruddin, K. S. and Mohamad, W. Z. A., (2016). Amplificatıon effect on stress ıntensıty factor at different crack interval in cortical bone, ARPN J. Eng. Appl. Sci, 11; 5515-5520.

da Silva, C. L. M. and Scotti, A., (2004). Performance assessment of the (Trans)Varestraint tests for determining solidification cracking susceptibility when using welding processes with filler metal, Meas. Sci. Technol,. 15; 2215. https://doi.org/10.5781/JWJ.2014.32.1.22

Randić, M.,Pavletić, D. and Potkonjak, Ž., (2022).The Influence of Heat Input on the Formation of Fatigue Cracks for High-Strength Steels Resistant to Low Temperatures, Metals, 12; 929. https://doi.org/10.5781/JWJ.2014.32.1.22

Wang, H., Zhao, S., Luo, G., Tang, Z., Li, X.,Lu, W. and Wang, M., (2023). Effect of Heat Input on Microstructure and Properties of Laser-Welded 316L/In601 Dissimilar Overlap Joints in High-Temperature Thermocouple. Materials, 16; 7114.

https://doi.org/10.5781/JWJ.2014.32.1.22

Lee, M-J. and Kang, N-H., (2014).The Effects of Microstructure on Cold Crack in High-Strength Weld Metals, J. weld. join, 32(1);22-27. https://doi.org/10.5781/JWJ.2014.32.1.22

Huan-li, W., Ding-hua, H., Wu-ping, L., Wen-he, C., Shu-qing, D., Wei-fang, Y., Mao-sheng,L. and Yan-ping, Z.,(2017). Effect of Microstructure on Creep Crack Growth Rate in Welding Seam of Hot Reheat Steam Pipe Made of P92 Steel, J. Mech. Eng, 34; 14-19. https://doi.org/10.5781/JWJ.2014.32.1.22

Downloads

Published

2024-06-27

How to Cite

Çalık, A., & Uçar, N. (2024). Microstructure properties of welded S420MC dual phase steel. International Journal of Computational and Experimental Science and Engineering, 10(2). https://doi.org/10.22399/ijcesen.336

Issue

Section

Research Article