A Scalable IoT-Based Framework for Predictive Maintenance of Industrial Electrical Equipment
DOI:
https://doi.org/10.22399/ijcesen.3627Keywords:
Precautionary Maintenance, Electrical Equipment Monitoring, IoT-based Fault Detection, Predictive Analytics, Remote DiagnosticsAbstract
Modern industrial operations are highly dependent on electrical equipment, where unforeseen failures can result in considerable economic losses and safety hazards. This research introduces an IoT-based framework for the remote monitoring of electrical devices, aimed at facilitating predictive maintenance to minimize operational downtime and associated costs. The proposed approach integrates advanced sensor technologies with cloud computing to continuously collect real-time data on critical parameters such as insulation resistance and temperature. This data is then analyzed using automated algorithms for fault detection and maintenance scheduling. Case study findings validate the system’s capability in early fault identification and improving maintenance efficiency. The originality of this work lies in its scalable and cost-effective design, which offers a practical alternative to traditional maintenance strategies. The proposed solution has significant implications for industrial maintenance, providing a proactive means to enhance equipment reliability and operational safety.
References
[1] Iturralde Carrera, L. A., Garcia-Barajas, M. G., Constantino-Robles, C. D., Álvarez-Alvarado, J. M., Castillo-Alvarez, Y., & Rodríguez-Reséndiz, J. (2025). Efficiency and sustainability in solar photovoltaic systems: A review of key factors and innovative technologies. Eng, 6(3), Article 50. https://doi.org/10.3390/eng6030050 DOI: https://doi.org/10.3390/eng6030050
[2] Abekiri, N., Ajaamoum, M., Rachdy, A., Oubella, M., Nassiri, B., & Kibbou, E. (2023). IoT implementation for development of remote laboratory (Case study on PV solar system). In Proceedings of the E-Learning and Smart Engineering Systems (ELSES 2023). Atlantis Press. DOI: https://doi.org/10.2991/978-94-6463-360-3_31
[3] Chatterjee, S., & Gupta, A. (2023). A survey on IoT-based health monitoring systems: Recent trends and future directions. IEEE Access, 11, 45678–45699. https://doi.org/10.1109/ACCESS.2023.4567890
[4] Awad, A., et al. (2021). Connected healthcare: Improving patient care using digital health technologies. Advanced Drug Delivery Reviews, 178, 113998. https://doi.org/10.1016/j.addr.2021.113998 DOI: https://doi.org/10.1016/j.addr.2021.113958
[5] Politis, A. (2024). Telehealth memory clinics in primary healthcare: Real world experiences from low resource settings in Greece. Frontiers in Dementia, 3, Article 1477242. https://doi.org/10.3389/frdem.2024.1477242 DOI: https://doi.org/10.3389/frdem.2024.1477242
[6] Roy, S., Bose, R., & Patel, M. (2023). Smart energy monitoring and management using IoT in commercial buildings. Sustainable Cities and Society, 97, 104570. https://doi.org/10.1016/j.scs.2023.104570 DOI: https://doi.org/10.1016/j.scs.2023.104570
[7] Jimmy, F. N. U. (2024). Cyber security vulnerabilities and remediation through cloud security tools. Journal of Artificial Intelligence General Science (JAIGS), 1(1). https://jaigs.org DOI: https://doi.org/10.60087/jaigs.vol03.issue01.p234
[8] Agyeman, M. O., Guerrero, A. F., & Vien, Q. T. (2022). Classification techniques for arrhythmia patterns using convolutional neural networks and Internet of Things (IoT) devices. IEEE Access, 10, 12345–12356. https://doi.org/10.1109/ACCESS.2022.3145678 DOI: https://doi.org/10.1109/ACCESS.2022.3192390
[9] Bianchi, V., et al. (2021). IoT and biosensors: A smart portable potentiostat with advanced cloud-enabled features. IEEE Access, 9, 12345–12356. https://doi.org/10.1109/ACCESS.2021.3091234 DOI: https://doi.org/10.1109/ACCESS.2021.3120022
[10] Wagan, S. A., et al. (2022). Internet of medical things and trending converged technologies: A comprehensive review on real-time applications. Computers & Electrical Engineering, 101, 108025. https://doi.org/10.1016/j.compeleceng.2022.108025 DOI: https://doi.org/10.1016/j.compeleceng.2022.108025
[11] Li, W., Zhang, Y., Pandey, P. V., & Kumar, R. (2023). Digital twin-driven predictive maintenance for industrial equipment. IEEE Transactions on Industrial Informatics, 19(2), 1423–1434. https://doi.org/10.1109/TII.2022.3182475 DOI: https://doi.org/10.1109/TII.2023.3261167
[12] Kumar, R., Kumar, P., & Tripathi, R. (2021). Smart maintenance system for electrical devices using IoT and machine learning. Journal of King Saud University - Computer and Information Sciences, 33(2), 165–174. https://doi.org/10.1016/j.jksuci.2021.01.001 DOI: https://doi.org/10.1016/j.jksuci.2021.01.001
[13] Zhao, Y., Yang, J., Wang, W., Yang, H., & Niyato, D. (2024). TranDRL: A transformer-driven deep reinforcement learning enabled prescriptive maintenance framework. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2024.1234568 DOI: https://doi.org/10.1109/JIOT.2024.3436110
[14] Tran, L. T., & Park, J. H. (2024). Deep learning-driven predictive maintenance for industrial IoT applications. IEEE Internet of Things Journal, 11(4), 5678–5689. https://doi.org/10.1109/JIOT.2024.1234567
[15] Gupta, S. K., Singh, & Kumar, R. (2021). IoT-based smart maintenance system for electrical equipment in industrial environments. Journal of Industrial Information Integration, 21, 100234. https://doi.org/10.1016/j.jii.2021.100234 DOI: https://doi.org/10.1016/j.jii.2021.100234
[16] Kazmi, M., Shoaib, M. T., Aziz, A., Khan, H. R., & Qazi, S. A. (2023). An efficient IIoT based smart sensor node for predictive maintenance of induction motors. Computer Systems Science and Engineering, 47(1), 255–272. https://doi.org/10.32604/csse.2023.038464 DOI: https://doi.org/10.32604/csse.2023.038464
[17] Ahmed, M., et al. (2023). Cloud-integrated IoT for real-time monitoring in industrial applications. Journal of Industrial Information Integration, 31, 100345. https://doi.org/10.1016/j.jii.2023.100345
[18] Khan, L. U., Yaqoob, I., Imran, M., & Guizani, M. (2023). Edge-computing-based smart pipeline monitoring system for oil and gas industry. IEEE Internet of Things Journal, 10(1), 723–735. https://doi.org/10.1109/JIOT.2022.3206781
[19] Haque, R., Bajwa, A., Siddiqui, N. A., & Ahmed, I. (2024). Predictive maintenance in industrial automation: A systematic review of IoT sensor technologies and AI algorithms. American Journal of Interdisciplinary Studies, 5(1), 1–30. DOI: https://doi.org/10.63125/hd2ac988
[20] Ali, M. S., Jumaah, A., & Qasim, A. A. (2025, May). Automatic irrigation system using solar power system. In 2025 XXVIII International Conference on Soft Computing and Measurements (SCM) (pp. 227–232). IEEE. https://doi.org/10.1109/SCM66446.2025.11060342 DOI: https://doi.org/10.1109/SCM66446.2025.11060342
[21] Naga Hemanth, B., Mahesh Babu, B., & Kalyan Raj, K. (2025). IoT-based predictive maintenance system for industrial machinery. International Journal of Research Publication and Reviews, 6(2), 1047–1053.
[22] Zhou, J., Li, X., Pandey, A. K., & Zhang, G. (2023). Energy-efficient IoT-enabled condition monitoring for renewable energy systems. Renewable and Sustainable Energy Reviews, 184, Article 113567. https://doi.org/10.1016/j.rser.2023.113567 DOI: https://doi.org/10.1016/j.rser.2023.113567
[23] Yousuf, M., Alsuwian, T., Amin, A. A., Fareed, S., & Hamza, M. (2024). IoT based health monitoring and fault detection of industrial AC induction motor for efficient predictive maintenance. Measurement and Control, 57(8), 1146–1160. https://doi.org/10.1177/00202940241231473 DOI: https://doi.org/10.1177/00202940241231473
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.