ETL Optimization for Scalable BI in Financial Enterprises
DOI:
https://doi.org/10.22399/ijcesen.3763Keywords:
ETL Optimization, Financial Business Intelligence, Apache Kafka, Airflow, Data Pipelines, Real-Time ETL, Metadata Management, Data Governance, dbt, Apache Spark, Cloud Data Warehousing, Data Observability, Streaming AnalyticsAbstract
Modern financial enterprises face growing complexity in managing high-volume, high-velocity, and high-variety data generated by various channels, including trading platforms, mobile banking, credit scoring engines, and compliance systems. Traditional Extract-Transform-Load (ETL) mechanisms are increasingly strained under these demands, leading to performance bottlenecks, data latency, and governance risks. This paper presents a comprehensive review and architectural model for optimizing ETL pipelines to support scalable Business Intelligence (BI) in the financial sector. Drawing upon 30 peer-reviewed sources, we analyze challenges such as real-time processing, metadata management, observability, and regulatory compliance. We propose a modern ETL reference architecture using tools such as Apache Airflow, Kafka, dbt, Spark, and cloud-native data warehouses. Benchmark evaluations show performance gains of 60–90% in load time and 95% improvement in pipeline reliability over legacy systems. This study offers an actionable roadmap for financial institutions aiming to modernize their data infrastructure in alignment with evolving regulatory and business intelligence needs.
References
[1]. Akbarinia, R., & Vaisman, A. A. (2019). Optimizing ETL processes for data warehousing: A survey. Information Systems, 87, 101415. https://doi.org/10.1016/j.is.2019.01.005
[2]. Tomczak, A., & Wrembel, R. (2022). On the design of near real-time ETL workflows for financial systems. Data & Knowledge Engineering, 140, 101995 https://doi.org/10.1016/j.datak.2021.101995
[3. Raju, A. (2020). Building data pipelines with Apache Airflow. O'Reilly Media.
[4] Kreps, J., Narkhede, N., & Rao, J. (2011). Kafka: A distributed messaging system for log processing. Proceedings of the NetDB Workshop, 11, 1–7.
[5]. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M. & Stoica, I. (2012). Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. USENIX NSDI, 12, 2.
[6]. Dunning, T., & Friedman, E. (2014). Streaming architecture: New designs using Apache Kafka and MapR Streams. O'Reilly Media.
[7]. Ghosh, D., & Ghosh, P. (2020). Compliance-aware data pipelines using Spark and Apache Atlas. IEEE Big Data, 1470–1479. https://doi.org/10.1109/BigData50022.2020.9378143
[8]. Saracco, J. (2021). Data engineering with dbt: A practical guide. Packt Publishing.
[9]. Bauer, A., & Günzel, H. (2017). From ETL to real-time data warehousing: Design and implementation of a real-time ETL framework. Lecture Notes in Business Information Processing, 304, 1–15. https://doi.org/10.1007/978-3-319-65930-5_1
[10].Abadi, D. J., Marcus, A., Madden, S., & Hollenbach, K. (2009). Scalable semantic web data management using vertical partitioning. VLDB, 1(1), 411–422.
[11].Grolinger, K., Higashino, W. A., Tiwari, A., & Capretz, M. A. M. (2013). Data management in cloud environments: NoSQL and NewSQL data stores. Journal of Cloud Computing, 2(1), 22. https://doi.org/10.1186/2192-113X-2-22
[12]Mahmood, Z., & Hill, R. (2021). Cloud computing for enterprise architectures. Springer.
[13].Eckerson, W. W. (2011). Performance dashboards: Measuring, monitoring, and managing your business (2nd ed.). Wiley.
[14].Sato, D., Lee, H., & Chiba, T. (2021). Modern data stack for financial analytics: A case study in digital transformation. Journal of Financial Data Science, 3(2), 37–49. https://doi.org/10.3905/jfds.2021.1.054
[15].Zheng, Y., Zhang, C., & Ma, K. (2019). A performance-aware orchestration strategy for distributed ETL pipelines. IEEE Transactions on Services Computing, 13(5), 908–920. https://doi.org/10.1109/TSC.2019.2914365
[16].Cuzzocrea, A., Song, I. Y., & Davis, K. C. (2013). Analytics over big data: The challenge of complexity. ACM SAC, 971–976. https://doi.org/10.1145/2480362.2480543
[17].Stonebraker, M., & Çetintemel, U. (2005). One size fits all: An idea whose time has come and gone. Proceedings of the 21st International Conference on Data Engineering (ICDE), 2–11.
[18].Castellanos, M., Simitsis, A., Wilkinson, K., Dayal, U., & Vassiliadis, P. (2012). Optimizing ETL workflows for fault-tolerance. Information Systems, 37(1), 67–98. https://doi.org/10.1016/j.is.2011.06.001
[19].Tiwari, R., & Tiwari, R. (2019). Modern ETL with Azure Data Factory. Packt Publishing.
[20].Wrembel, R. (2018). A survey on management of evolving data in data warehouses. Journal of Data and Information Quality (JDIQ), 9(2), 1–26.
[21].Nolle, T., Seeliger, A., & Harth, A. (2021). Automated pipeline testing in data engineering. Proceedings of EDBT/ICDT Workshops, 133–142.
[22].Halevy, A., Rajaraman, A., & Ordille, J. (2006). Data integration: The teenage years. VLDB Journal, 15(2), 1–10.
[23].Karpatne, A., Atluri, G., Faghmous, J. H., Steinbach, M., Banerjee, A., Ganguly, A., ... & Kumar, V. (2017). Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Transactions on Knowledge and Data Engineering, 29(10), 2318–2331.
[24].Cuzzocrea, A. (2014). Privacy and security of big data: Current challenges and future research perspectives. ACM SAC, 1459–1464. https://doi.org/10.1145/2554850.2555044
[25].Marz, N., & Warren, J. (2015). Big Data: Principles and best practices of scalable real-time data systems. Manning Publications.
[26].Candan, K. S., Liu, H., & Zhou, X. (2009). Measuring quality of information: A quality-aware framework for information fusion. ACM SIGMOD Record, 38(3), 54–60.
[27].Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M. J., ... & Zdonik, S. (2005). C-store: A column-oriented DBMS. VLDB, 553–564.
[28].Chen, L., Ooi, B. C., Tan, K. L., & Zhang, M. (2011). It is not easy to develop fast and scalable ETL pipelines. IEEE Data Engineering Bulletin, 34(3), 3–11.
[29].Watson, H. J., & Wixom, B. H. (2007). The current state of business intelligence. Computer, 40(9), 96–99. https://doi.org/10.1109/MC.2007.331
[30].Jagadish, H. V., Lakshmanan, L. V., Srivastava, D., & Thompson, K. (2014). Managing conflict using priorities in information integration. Journal of Intelligent Information Systems, 43(2), 275–295.
[31].Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165–1188. https://doi.org/10.2307/41703503
[32].Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47, 98–115.
[33] Inmon, W. H., & Linstedt, D. (2015). Data architecture: A primer for the data scientist. Elsevier.
[34] Hildebrandt, T., & Kolb, J. (2018). Real-time ETL for analytics: Concepts, tools and trends. Computer Science Review, 29, 1–15.
[35] Strohbach, M., Daubert, J., Ravkin, H., & Lischka, M. (2017). Towards a big data analytics framework for IoT and cloud. Journal of Systems and Software, 132, 27–40.
[36] Jagadish, H. V. (2015). Big data and science: Myths and reality. Big Data Research, 2(2), 49–52.
[37] Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques (3rd ed.). Elsevier.
[38] Jarke, M., Lenzerini, M., Vassiliou, Y., & Vassiliadis, P. (2003). Fundamentals of data warehousing. Springer.
[39] Zhang, Y., Gu, X., & Rao, S. (2018). A survey of real-time big data analytics using stream-processing platforms. Software: Practice and Experience, 48(10), 1768–1786.
[40] Muthukkaruppan, K. (2013). Scaling the Uber data platform with Kafka and Spark Streaming. Uber Engineering Blog.
[41] Kejariwal, A. (2015). Real-time anomaly detection for streaming analytics. Proceedings of the IEEE International Conference on Data Mining Workshop, 119–128.
[42] Yao, X., Zhao, Y., & Li, Y. (2019). Performance modeling and tuning in cloud-based ETL workflows. Future Generation Computer Systems, 95, 230–241.
[43] Papotti, P., & Hernandez, M. A. (2011). Data fusion and data cleaning. Proceedings of the VLDB Endowment, 4(11), 1542–1545.
[44] Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171–209.
[45] Elmasri, R., & Navathe, S. B. (2015). Fundamentals of database systems (7th ed.). Pearson.
[46] Li, F., & Deshpande, A. (2017). Optimizing ETL operations for interactive exploration of big data. IEEE Transactions on Knowledge and Data Engineering, 29(10), 2230–2242.
[47] Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97–107.
[48] Minelli, M., Chambers, M., & Dhiraj, A. (2013). Big data, big analytics: Emerging business intelligence and analytic trends for today's businesses. Wiley.
[49] Abiteboul, S., Buneman, P., & Suciu, D. (2000). Data on the web: From relations to semistructured data and XML. Morgan Kaufmann.
[50] Simitsis, A., Wilkinson, K., Dayal, U., & Castellanos, M. (2010). Optimizing ETL workflows for fault-tolerance. Proceedings of the International Conference on Data Engineering (ICDE), 385–396.
[51] Sikka, V. (2006). SAP HANA: In-memory data management for modern business applications. ACM SIGMOD Record, 40(4), 45–51.
[52] Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., ... & Stoica, I. (2016). Apache Spark: A unified engine for big data processing. Communications of the ACM, 59(11), 56–65.
[53] Vohra, D. (2016). Apache Kafka. Apress.
[54] Singh, A., & Shukla, A. (2020). Real-time business intelligence framework for financial enterprises using Apache Flink. International Journal of Advanced Computer Science and Applications, 11(7), 123–131.
[55] Iqbal, M., & Ali, M. (2019). Data pipeline architectures for real-time analytics in cloud environments. IEEE Access, 7, 164107–164119.
[56] Wolski, R., Plale, B., & Mandal, A. (2022). Data flow systems in cloud computing. Journal of Cloud Computing, 11(1), 1–21.
[57] Doan, A., Halevy, A., & Ives, Z. (2012). Principles of data integration. Elsevier.
[58] Rajaraman, A., & Ullman, J. D. (2012). Mining of massive datasets (2nd ed.). Cambridge University Press.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.