Generalized F-contraction Mapping in G-Metric Spaces and Some Fixed Point Results
DOI:
https://doi.org/10.22399/ijcesen.3850Keywords:
G-metric space, Fixed point, Generalized F-contraction, MSC for 2020, 47H10, 54H25Abstract
In this research paper, we define some new notions of generalized F-contraction of type (L) and type (J) in G-metric spaces. By using these notions we define some fixed point theorems. We also provided an example to justify our results.
References
[1] Banach, S., (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, 3. 133-181. DOI: https://doi.org/10.4064/fm-3-1-133-181
[2] Dung, N.V. and Hang, V. L., (2015). A fixed point theorem for generalized F-contractions on complete metric spaces, Vietnam J. Math. 43. 743-753. DOI: https://doi.org/10.1007/s10013-015-0123-5
[3] Mustafa, Z. and Sims, B., (2006). A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2), 289-297.
[4] Piri, H. and Kumam, P., (2014). Some fixed point theorems concerning F-contraction in complete metric space, Fixed Point Theory Appl. Article ID-210, 1-13. DOI: https://doi.org/10.1186/1687-1812-2014-210
[5] Piri, H. and Kumam, P. (2016). Wardowski type fixed point theorems in complete metric spaces, Fixed Point Theory Appl.45. 1-12. DOI: https://doi.org/10.1186/s13663-016-0529-0
[6] Wardowski, D., (2012). Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. Article ID- 94, 1-6. DOI: https://doi.org/10.1186/1687-1812-2012-94
[7] Wardowski, D. and Dung, N.V., (2014). Fixed points of F-weak contractions on complete metric spaces, Demoster. Math. XLVII, 146-155..” DOI: https://doi.org/10.2478/dema-2014-0012
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.