The Feasibility of Using a Handheld Auto-refractor as a Tool for Vision Screening in Pediatric Primary Care to Detect Amblyogenic Risk Factors

Authors

  • Sultan Fahad N Althunayan
  • bdulrahman ASIRI
  • Moath Badr Hassan SOBAIH
  • Talhah Mohammed ALGHASHAM
  • Nouf Sulaiman Masad ALBALAWİ
  • Abdullah Hammad A ALSADOON
  • Mısharı Abdulrahman ALSUBAIHI
  • Haitham Mohammed Ali ALHAZMI
  • Basem Ali Sulaiman WASEL

DOI:

https://doi.org/10.22399/ijcesen.3878

Keywords:

Amblyopia, Vision Screening, Pediatrics, Primary Health Care, Autorefraction, Early Diagnosis

Abstract

Amblyopia is the leading cause of preventable monocular vision loss in children, with effectiveness of treatment critically dependent on early detection during the plastic period of visual development. Traditional vision screening methods in primary care pediatrics, reliant on subjective visual acuity tests, have significant limitations in sensitivity and testability, particularly in pre-verbal children. This paper evaluates the feasibility, accuracy, and impact of integrating handheld autorefractors into the pediatric primary care vision screening protocol to enhance the early detection of amblyogenic risk factors (ARFs). Handheld autorefractors demonstrated superior testability rates (>95%), especially in children under 3 years of age, and significantly higher sensitivity for detecting the most common ARFs, particularly significant refractive errors like hyperopia and astigmatism. They were found to be practical for use in a busy primary care setting, requiring minimal training and time. Timely screening before age 5, enabled by this technology, is directly linked to dramatically improved treatment outcomes and a reduction in the prevalence of severe amblyopia. The integration of handheld autorefractors into pediatric primary care vision screening is a feasible, accurate, and highly effective strategy. It represents a major advancement in public health efforts to prevent amblyopia by enabling objective, early detection of amblyogenic risk factors within the critical window for successful intervention.

References

[1] Yasir ZH, Almadhi N, Tarabzouni S, Alhommadi A, Khandekar R. (2019). Refractive error of Saudi children enrolled in primary school and kindergarten measured with a spot screener. Oman J Ophthalmol. 12:114–8. doi: 10.4103/ojo.OJO_62_2017.

[2] Hartmann EE, Block SS, Wallace DK, (2015). National Expert Panel to the National Center for Children’s Vision and Eye Health. Vision and eye health in children 36 to<72 months: Proposed data system. Optom Vis Sci. 92:24–30. doi: 10.1097/OPX.0000000000000445.

[3] Al-Rowaily MA. (2010). Prevalence of refractive errors among pre-school children at King Abdulaziz Medical City, Riyadh, Saudi Arabia. Saudi J Ophthalmol. 24:45–8. doi: 10.1016/j.sjopt.2010.01.001.

[4] Sigronde L, Blanc J, Aho S, Pallot C, Bron AM, Creuzot-Garcher C. (2020). Evaluation of the spot vision screener in comparison with the orthoptic examination in visual screening in 3-5 year-old schoolchildren. J Fr Ophtalmol. 43:411–6. doi: 10.1016/j.jfo.2019.10.006.

[5] Kulp MT, Ciner E, Ying GS, Candy TR, Moore BD, Orel-Bixler D, et al., (2022). Vision screening, vision disorders, and impacts of hyperopia in young children: Outcomes of the vision in preschoolers (VIP) and vision in preschoolers – Hyperopia in preschoolers (VIP-HIP) studies. Asia Pac J Ophthalmol (Phila) 11:52–8. doi: 10.1097/APO.0000000000000483.

[6] Kapoor V, Shah SP, Beckman T, Gole G., (2022). Community based vision screening in preschool children; performance of the spot vision screener and optotype testing. Ophthalmic Epidemiol. 29:417–25. doi: 10.1080/09286586.2021.1962918.

[7] Chen AM, Cotter SA. (2016). The amblyopia treatment studies: Implications for clinical practice. Adv Ophthalmol Optom. 1:287–305. doi: 10.1016/j.yaoo.2016.03.007.

[8] Peterseim MM, Trivedi RH, Monahan SR, Smith SM, Bowsher JD, Alex A, et al., (2023). Effectiveness of the spot vision screener using updated 2021 AAPOS guidelines. J AAPOS. 27:24.e1–7. doi: 10.1016/j.jaapos.2022.11.019.

[9] Carlton J, Griffiths HJ, Mazzone P, Horwood AM, Sloot F, (2022). EUSCREEN Study Consortium A comprehensive overview of vision screening programmes across 46 countries. Br Ir Orthopt J. 18:27–47. doi: 10.22599/bioj.260.

[10] Thomas J, Rajashekar B, Kamath A, Gogate P., (2021). Comparison between plusoptix A09 and gold standard cycloplegic refraction in preschool children and agreement to detect refractive amblyogenic risk factors. Oman J Ophthalmol. 14:14–9. doi: 10.4103/ojo.OJO_284_2019.

[11] Ministry of Health. (2021). Statistical Book. Vol. 2. Ministry of Health. Primary health care centers in Qassim region; 102.

[12] Alsaqr AM, Ibrahim G, Sharha AA, Fagehi R. (2017). Investigating the visual status of preschool children in Riyadh, Saudi Arabia. Middle East Afr J Ophthalmol. 24:190–4. doi: 10.4103/meajo.MEAJO_123_17.

[13] Miller JM, Lessin HR, (2012). American Academy of Pediatrics Section on Ophthalmology, Committee on Practice and Ambulatory Medicine, American Academy of Ophthalmology, American Association for Pediatric Ophthalmology and Strabismus, et al. Instrument-based pediatric vision screening policy statement. Pediatrics. 130:983–6. doi: 10.1542/peds.2012-2548.

[14] Jac-Okereke CC, Jac-Okereke CA, Ezegwui IR, Okoye O., (2020). Vision screening in infants attending immunization clinics in a developing country. J Prim Care Community Health. 11:2150132720907430. doi: 10.1177/2150132720907430.

[15] General Authority of Statistics Saudi Arabia. Population in Al-Qaseem Region in 2017.

[16] Amna Puri-Mirza, (2020). Number of Kindergartens in Early Childhood in Saudi Arabia 2016-2017.

[17] Azar DT. (2015). San Francisco, CA, USA: American Academy of Ophthalmology. Clinical Refraction: Clinical Optics: Basic and Clinical Science Course 2015-2016.

[18] Khandekar R, Al Harby S, Mohammed AJ. (2010). Eye and vision defects in under-five-year-old children in Oman: A public health intervention study. Oman J Ophthalmol. 3:13–7. doi: 10.4103/0974-620X.60015.

[19] Fu Z, Hong H, Su Z, Lou B, Pan CW, Liu H. (2020). Global prevalence of amblyopia and disease burden projections through 2040: A systematic review and meta-analysis. Br J Ophthalmol. 104:1164–70. doi: 10.1136/bjophthalmol-2019-314759.

[20] Hartford JB, Bian Y, Mathews PM, De Rojas J, Garg A, Rasool N, et al., (2019). Prevalence and risk factors of exposure keratopathy across different intensive care units. Cornea. 38:1124–30. doi: 10.1097/ICO.0000000000001961.

[21] Alzuhairy S, Alabdulrazaq ES, Alharbi IM, Alharkan DH., (2019). Knowledge and attitude towards strabismus among parents of Saudi children with strabismus. Int Surg J. 6:438–42.

[22] Hu B, Liu Z, Zhao J, Zeng L, Hao G, Shui D, et al., (2022). The global prevalence of amblyopia in children: A systematic review and meta-analysis. Front Pediatr. 10:819998. doi: 10.3389/fped.2022.819998.

[23] Wen G, Tarczy-Hornoch K, McKean-Cowdin R, Cotter SA, Borchert M, Lin J, et al., (2013). Prevalence of myopia, hyperopia, and astigmatism in non-Hispanic white and Asian children: Multi-ethnic pediatric eye disease study. Ophthalmology. 120:2109–16. doi: 10.1016/j.ophtha.2013.06.039.

[24] Taha AO, Ibrahim SM., (2015). Prevalence of manifest horizontal strabismus among basic school children in Khartoum City, Sudan. Sudan J Ophthalmol. 7:53.

[25] Bird B, Dingley S, Stawicki SP, Wojda TR., (2018). Vignettes in Patient Safety –Volume 2. United Kingdom: InTech; Exposure keratopathy in the intensive care unit: Do not neglect the unseen.

[26] Dobrow MJ, Hagens V, Chafe R, Sullivan T, Rabeneck L., (2018). Consolidated principles for screening based on a systematic review and consensus process. CMAJ. 190:E422–9. doi: 10.1503/cmaj.171154.

[27] Alrahili NH, Jadidy ES, Alahmadi BS, Abdula’al MF, Jadidy AS, Alhusaini AA, et al., (2017). Prevalence of uncorrected refractive errors among children aged 3-10 years in Western Saudi Arabia. Saudi Med J. 38:804–10. doi: 10.15537/smj.2017.8.20412.

[28] Cotter S.A., Cyert L.A., Miller J.M., Quinn G.E., (2015). Vision Screening for Children 36 to <72 months: Recommended practices. Optom. Vis. Sci. 92:6–16. doi: 10.1097/OPX.0000000000000429.

[29] Holden B.A., Fricke T.R., Wilson D.A., Jong M., Naidoo K.S., Sankaridurg P., Wong T.Y., Naduvilath T.J., Resnikoff S., (2016). Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology. 123:1036–1042. doi: 10.1016/j.ophtha.2016.01.006.

[30] Grossman D.C., Curry S.J., Owens D.K., Barry M.J., Davidson K.W., Doubeni C.A., Epling J.W., Kemper A.R., Krist A.H., Kurth A.E., et al., (2017). Vision Screening in Children Aged 6 Months to 5 Years: US Preventive Services Task Force Recommendation Statement. JAMA. 318:836–844. doi: 10.1001/jama.2017.11260.

[31] Tarczy-Hornoch K., Varma R., Cotter S.A., McKean-Cowdin R., Lin J.H., Borchert M.S., Torres M., Wen G., Azen S.P., Tielsch J.M., et al., (2011). Risk Factors for Decreased Visual Acuity in Preschool Children: The Multi-Ethnic Pediatric Eye Disease and Baltimore Pediatric Eye Disease Studies. Ophthalmology. 118:2262–2273. doi: 10.1016/j.ophtha.2011.06.033.

[32] Kemper A.R., Bruckman D., Freed G.L., (2004). Prevalence and Distribution of Corrective Lenses among School-Age Children. Optom. Vis. Sci. 81:7–10. doi: 10.1097/00006324-200401000-00003.

[33] Asare A.O., Wong A.M.F., Maurer D., Kulandaivelu Y., Saunders N., Ungar W.J., (2022). Economic Evaluations of Vision Screening to Detect Amblyopia and Refractive Errors in Children: A Systematic Review. Can. J. Public Health. 113:297–311. doi: 10.17269/s41997-021-00572-x.

[34] Eibschitz-Tsimhoni M., Friedman T., Naor J., Eibschitz N., Friedman Z., (2000). Early Screening for Amblyogenic Risk Factors Lowers the Prevalence and Severity of Amblyopia. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus. 4:194–199. doi: 10.1067/mpa.2000.105274.

[35] Wallace D.K., Morse C.L., Melia M., Sprunger D.T., Repka M.X., Lee K.A., Christiansen S.P., (2018). Pediatric Eye Evaluations Preferred Practice Pattern®: I. Vision Screening in the Primary Care and Community Setting; II. Comprehensive Ophthalmic Examination. Ophthalmology. 125:P184–P227. doi: 10.1016/j.ophtha.2017.09.032.

[36] Tarczy-Hornoch K., Cotter S.A., Borchert M., McKean-Cowdin R., Lin J., Wen G., Kim J., Varma R., (2013). Multi-Ethnic Pediatric Eye Disease Study Group Prevalence and Causes of Visual Impairment in Asian and Non-Hispanic White Preschool Children: Multi-Ethnic Pediatric Eye Disease Study. Ophthalmology. 120:1220–1226. doi: 10.1016/j.ophtha.2012.12.029.

[37] Neitzel A.J., Wolf B., Guo X., Shakarchi A.F., Madden N.A., Repka M.X., Friedman D.S., Collins M.E., (2021). Effect of a Randomized Interventional School-Based Vision Program on Academic Performance of Students in Grades 3 to 7: A Cluster Randomized Clinical Trial. JAMA Ophthalmol. 139:1104–1114. doi: 10.1001/jamaophthalmol.2021.3544.

[38] Michael S.L., Merlo C.L., Basch C.E., Wentzel K.R., Wechsler H., (2015). Critical Connections: Health and Academics. J. Sch. Health. 85:740–758. doi: 10.1111/josh.12309.

[39] Doshi N.R., Rodriguez M.L.F., (2007). Amblyopia. Am. Fam. Physician. 75:361–367.

[40] Whole School, Whole Community, Whole Child (WSCC).

[41] Atowa U.C., Wajuihian S.O., Hansraj R., (2019). A Review of Paediatric Vision Screening Protocols and Guidelines. Int. J. Ophthalmol. 12:1194–1201. doi: 10.18240/ijo.2019.07.22.

[42] Wilson J.M.G., Jungner G., (1968). World Health Organization. Principles and Practice of Screening for Disease. World Health Organization; Geneva, Switzerland.

[43] Antonio-Aguirre B., Emge G., Collins M., (2022). Missed Vision Screenings for School-Age Children during the COVID-19 Pandemic: A Survey Based Study of NASN Representatives. J. Sch. Nurs. 10598405221117511. doi: 10.1177/10598405221117511.

[44] Muhammad M., Tumin D., (2022). Unmet Needs for Vision Care among Children with Gaps in Health Insurance Coverage. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus. 26:63.e1–63.e4. doi: 10.1016/j.jaapos.2021.12.005.

[45] Toro M.D., Bremond-Gignac D., Brézin A.P., Cummings A.B., Kemer O.E., Kermani O., Malyugin B.E., Prieto I., Teus M.A., Tognetto D., et al., (2022). COVID-19 Outbreak and Increased Risk of Amblyopia and Epidemic Myopia: Insights from EUROCOVCAT Group. Eur. J. Ophthalmol. 32:17–22. doi: 10.1177/11206721211053175.

[46] Zhang X., Cheung S.S.L., Chan H., Zhang Y., Wang Y.M., Yip B.H., Kam K.W., Yu M., Cheng C.-Y., Young A.L., et al., (2022). Myopia Incidence and Lifestyle Changes among School Children during the COVID-19 Pandemic: A Population-Based Prospective Study. Br. J. Ophthalmol. 106:1772–1778. doi: 10.1136/bjophthalmol-2021-319307.

[47] Donahue S.P., Baker C.N., (2016). Procedures for the Evaluation of the Visual System by Pediatricians. Pediatrics. 137:e20153597. doi: 10.1542/peds.2015-3597.

[48] Wahl M.D., Fishman D., Block S.S., Baldonado K.N., Friedman D.S., Repka M.X., Collins M.E., (2021). A Comprehensive Review of State Vision Screening Mandates for Schoolchildren in the United States. Optom. Vis. Sci. 98:490–499. doi: 10.1097/OPX.0000000000001686.

[49] Alvi R.A., Justason L., Liotta C., Martinez-Helfman S., Dennis K., Croker S.P., Leiby B.E., Levin A.V., (2015). The Eagles Eye Mobile: Assessing its Ability to Deliver Eye Care in a High-Risk Community. J. Pediatr. Ophthalmol. Strabismus. 52:98–105. doi: 10.3928/01913913-20150216-02.

[50] Liang J., Chen Y., Zhao Y., Kakaer A., Jiang N., Huang S., Zhang S.-X., Chen Y.-J., (2021). Prevalence of Visual Impairment among Students before and during the COVID-19 Pandemic, Findings from 1,057,061 Individuals in Guangzhou, Southern China. Front. Pediatr. 9:1670. doi: 10.3389/fped.2021.813856.

[51] Carlton J., Griffiths H.J., Mazzone P., Horwood A.M., Sloot F., Consortium E.S., (2022). A Comprehensive Overview of Vision Screening Programmes Across 46 Countries. Br. Ir. Orthopt. J. 18:27–47. doi: 10.22599/bioj.260.

[52] Lam M., Suh D., (2022). Screening, Diagnosis, and Treatment of Pediatric Ocular Diseases. Children. 9:1939. doi: 10.3390/children9121939.

[53] Killeen O.J., Zhou Y., Musch D.C., Woodward M., Newman-Casey P.A., Moroi S., Speck N., Mukhtar A., Dewey C., (2022). Access to Eye Care and Prevalence of Refractive Error and Eye Conditions at a High School-Based Eye Clinic in Southeastern Michigan. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus. 26:185.e1–185.e6. doi: 10.1016/j.jaapos.2022.04.009.

[54] Maguire M.G. Children Unable to Perform Screening Tests in Vision in Preschoolers Study: Proportion with Ocular Conditions and Impact on Measures of Test Accuracy. Investig. Ophthalmol

[55] Ma S., Guan Y., Yuan Y., Tai Y., Wang T., (2020). A One-Step, Streamlined Children’s Vision Screening Solution Based on Smartphone Imaging for Resource-Limited Areas: Design and Preliminary Field Evaluation. JMIR mHealth uHealth. 8:e18226. doi: 10.2196/18226.

Downloads

Published

2025-09-15

How to Cite

Sultan Fahad N Althunayan, bdulrahman ASIRI, Moath Badr Hassan SOBAIH, Talhah Mohammed ALGHASHAM, Nouf Sulaiman Masad ALBALAWİ, Abdullah Hammad A ALSADOON, … Basem Ali Sulaiman WASEL. (2025). The Feasibility of Using a Handheld Auto-refractor as a Tool for Vision Screening in Pediatric Primary Care to Detect Amblyogenic Risk Factors. International Journal of Computational and Experimental Science and Engineering, 11(3). https://doi.org/10.22399/ijcesen.3878

Issue

Section

Research Article