Bioactive profile and safety of Stipa tenacissima L medicinal plant: polyphenols, antioxidants, toxicity and anti-inflammatory
DOI:
https://doi.org/10.22399/ijcesen.3955Keywords:
Stipa tenacissima L, Phytochemical content, antioxidant capacity, Anti-inflammatory, Acute toxicityAbstract
In addition to evaluating the phytochemical content and antioxidant capacity, this study was the first to examine the acute toxicity profile and anti-inflammatory properties of Stipa tenacissima L., an endemic plant widely distributed in Algeria known as "Halfa". Although its various and important traditional use, little scientific research has been explored into its critical medicinal properties. The results of these studies show that the aqueous extract contains the most phenolic and flavonoid components and has a higher antioxidant capacity. Anti-inflammatory activity was demonstrated in vitro through BSA denaturation inhibition of 89.93% at of 0.5 mg/mL, and in vivo use croton oil to produce ear edema in mice, where showed significant inhibition rate of 71.11% at dose of 100 mg/kg. Furthermore, the toxicological evaluation of the two oral doses of the aqueous extract given to mice groups (2 and 5 g/kg) shows that no mortality was seen and the LD50 is higher than 5000mg/kg. On histological examination, symptoms of mild toxicity comprised elevated liver enzymes ALT and AST, as well as infiltration of moderate hepatic inflammation, but there was no major renal or cardiac damage. These findings suggest that S tenacissima represents an interesting avenue in the development of new natural alternatives to traditional anti-inflammatories.
References
[1]Attah, A. F., Moody, J. O., Sonibare, M. A., Salahdeen, H. H., Akindele, O. O., Nnamani, P. O., Diyaolu, O. A., & Raji, Y. (2019). Aqueous extract of Moringa oleifera leaf used in Nigerian ethnomedicine alters conception and some pregnancy outcomes in Wistar rat. South African Journal of Botany, 129, 255–262. https://doi.org/10.1016/j.sajb.2019.05.015
[2]Annapandian, V. M., & Rajagopal, S. S. (2017). Phytochemical evaluation and in vitro antioxidant activity of various solvent extracts of Leucas aspera (Willd.) Link leaves. Free Radical Antioxidants, 7(2), 166–171. https://doi.org/10.5530/fra.2017.2.25
[3] Bahorun, T., Gressier, B., Trotin, F., Brunet, C., Dine, T., Luyckx, M., Vasseur, J., Cazin, M., Cazin, J. C., & Pinkas, M. (1996). Oxygen species scavenging activity of phenolic extracts from hawthorn fresh plant organs and pharmaceutical preparations. Arzneimittelforschung, 46, 1086–1089. http://europepmc.org/abstract/med/8955870.
[4]Chung, Y. C., Chen, S. J., Hsu, C. K., Chang, C. T., & Chou, S. T. (2005). Studies on the antioxidative activity of Graptopetalum paraguayense E. Walther. Food Chemistry, 91(3), 419–424. https://doi.org/10.1016/j.foodchem.2004.05.057
[5]Damor, K., Kadia, R., & Modi, N. (2025). A review of phytochemical and pharmacological analysis of Poaceae family plants. International Journal of Scientific Research in Science and Technology, 12(1), 450–462. https://doi.org/10.32628/IJSRST2512145
[6]El Bouchti, M., Bourhia, M., Alotaibi, A., et al. (2021). Stipa tenacissima L.: A new promising source of bioactive compounds with antioxidant and anticancer potentials. Life, 11(8), 757. https://doi.org/10.3390/life11080757
[7]Gebashe, F., Aremu, A. O., Finnie, J. F., & Van Staden, J. (2019). Grasses in South African traditional medicine: A review of their biological activities and phytochemical content. South African Journal of Botany, 122, 301–329. https://doi.org/10.1016/j.sajb.2018.10.012
[8]Hatano, T., Kagawa, H., Yasuhara, T., & Okuda, T. (1988). Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging effects. Chemical & Pharmaceutical Bulletin, 36(6), 2090–2097. https://doi.org/10.1248/cpb.36.2090
[9]Kanupriya Kumar, M., Sharma, A., & Dhiman, A. (2021). Medicinal potential of Digitaria: An overview. Journal of Pharmacognosy and Phytochemistry, 10(1), 1717–1719. https://www.phytojournal.com/archives/2021/vol10issue1/PartX/10-1-105-117.pdf
[10]Li, H. B., Cheng, K. W., Wong, C. C., Fan, K. W., Chen, F., & Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry, 102, 776. https://doi.org/10.1016/j.foodchem.2006.06.025
[11]Majeed, M., Bhatti, K. H., Amjad, M. S., Abbasi, A. M., Bussmann, R. W., Nawaz, F., Rashid, A., Mehmood, A., Mahmood, M., Khan, W. M., & Ahmad, K. S. (2020). Ethno-veterinary uses of Poaceae in Punjab, Pakistan. PloS one, 15(11), e0241705. https://doi.org/10.1371/journal.pone.0241705
[12]Markham, K. R. (1982). Techniques of flavonoid identification, Academic Press. p. 113.
[13]Quézel, P., & Santa, S. (1962). Nouvelle flore de l'Algérie et des régions désertiques et méridionales. CNRS, Vol I, pp. 120–122.
[14]Karthik, K., Bharath, R., Kumar, P., Priya, V. R., Kumar, S. K., & Rathore, R. S. B. (2013). Evaluation of anti-inflammatory activity of Canthium parviflorum by in-vitro method. Indian Journal of Research in Pharmacy and Biotechnology, 1(5), 729–731.
[15]Manga, H. M., Brkic, D., Marie, D. E., & Quetin-Leclercq, J. (2004). In vivo anti-inflammatory activity of Alchornea cordifolia (Schumach. & Thonn.) Müll. Arg. (Euphorbiaceae). Journal of ethnopharmacology, 92(2-3), 209–214. https://doi.org/10.1016/j.jep.2004.02.019.
[16]Delaporte, R. H., Sarragiotto, M. H., Takemura, O. S., Sánchez, G. M., Filho, B. P., & Nakamura, C. V. (2004). Evaluation of the antioedematogenic, free radical scavenging and antimicrobial activities of aerial parts of Tillandsiastreptocarpa Baker-Bromeliaceae. Journal of ethnopharmacology, 95(2-3), 229–233. https://doi.org/10.1016/j.jep.2004.07.022.
[17]OECD. 2001. The OECD Guideline for the Testing of Chemicals: 407 Repeated Dose Oral Toxicity – Rodent 28 Day or 14 Day Study. OECD, Paris: 1–7.
[18]Fattahi, S., Zabihi, E., Abedian, Z., Pourbagher, R., Motevalizadeh Ardekani, A., Mostafazadeh, A., & Akhavan-Niaki, H. (2014). Total Phenolic and Flavonoid Contents of Aqueous Extract of Stinging Nettle and In Vitro Antiproliferative Effect on Hela and BT-474 Cell Lines. International journal of molecular and cellular medicine, 3(2), 102–107. PMCID: PMC4082812
[19]Irina, I., & Mohame, G. (2012). Biological Activities and Effects of Food Processing on Flavonoids as Phenolic Antioxidants. InTech. 95–114. DOİ: 10.5772/30690
[20]Stagos D. (2019). Antioxidant Activity of Polyphenolic Plant Extracts. Antioxidants (Basel, Switzerland), 9(1), 19. https://doi.org/10.3390/antiox9010019
[21]Chıtındıngu, K., Ndhlala, A.R., Chapano, C., Benhura, M.A., & Muchuwetı, M. (2007), Phenolıc compound content, profıles and antıoxıdant actıvıtıes of amaranthus hybrıdus (pıgweed), brachıarıa brızantha (uprıght brachıarıa) and panıcum maxımum (guınea grass). Journal Of Food Biochemistry, 31: 206-216.https://doi.org/10.1111/j.1745-4514.2007.00108.x
[22]Pushparaj, F. S., & Urooj, A. (2014). Antioxidant Activity in Two Pearl Millet (Pennisetum typhoideum) Cultivars as Influenced by Processing. Antioxidants (Basel, Switzerland), 3(1), 55–66. https://doi.org/10.3390/antiox3010055
[23]Oyedapo, O.O., Akinpelu, B.A., Akinwunmi, K.F., Adeyinka, M.O., & Sipeolu, F.O. (2010). Red Blood Cell Membrane Stabilizing Potentials of Extracts of Lantana camara and Its Fractions. International Journal of Plant Physiology and Biochemistry, 2, 46-51.https://academicjournals.org/journal/IJPPB/article-full-text-pdf/3018C979858.
[24]Juárez-Vázquez, Md. C., Zamilpa, A., León- Díaz, R., Martínez-Vázquez, M., López-Torres, A, Luna- Herrera, J., Yépez-Mulia, L., Alarcón-Aguilar, F., & Jiménez-Arellanes, M. A. (2021), Phytochemical Screening and Anti-Inflammatory Potential of the Organic Extracts from Cleoserrata serrata (Jacq.) Iltis. Pharmacognosy Journal, 13(5), 1225-1241. DOI:10.5530/pj.2021.13.156.
[25]Duan, W. L., & Liang, X. M. (2011). Technical guidelines assembly of veterinary medicine research. Chemical Industry Press, Beijing.
[26]Abidoye, E.O., & Aplakah, I. (2017). Antinociceptive and antipyretic properties of ethanol extract of Oryza barthii (Poaceae) in Wistar rats. Sokoto Journal of Veterinary Science, 15(2), 43–48. DOI:10.4314/sokjvs.v15i2.6
[27]Nazifi, A.B., Abubakar, A., Magaji, M.G., Aliyu, M., Yaro, A.H., & Danjuma, N.M. (2023). Acute and 28-day toxicity evaluation of hydroethanolic extract of Eragrostis tremula (Poaceae) in Wistar rats. Journal of Pharmacy & Bioresources. 20(3): 146–161. https://dx.doi.org/10.4314/jpb.v20i3.6
[28]Tcheutchoua, Y. C., Bilanda, D. C., Mengue Ngadena, Y. S., Djomeni Dzeufiet, P. D., Owona, P. E., Goufani, R. B. Á., Fifen, R. N., Nguegan, L. M., Noubom, M., Dimo, T., & Kamtchouing, P. (2022). Acute and Subchronic Toxicity Studies on the Aqueous Extract of the Plant Mixture (Bidens pilosa and Cymbopogon citratus Aerial Parts) in Rat Model. Journal of toxicology, 2022, 1998433. https://doi.org/10.1155/2022/1998433
[29]Faqi, A.S. (2012). A Comprehensive Guide to Toxicology in Preclinical Drug Development. Academic Press, 1st ed.: 1–1024.
[30]Jorum, O.H., Piero, N.M., & Machocho, A.K. (2016). Haematological effects of dichloromethane-methanolic leaf extracts of Carissa edulis in normal rat models. Journal of Hematology & Thromboembolic Diseases, 4(1), 232. https://doi.org/10.4172/2329-8790.1000232
[31]Hayes, A.W., & Kruger, C.L. (2014). Hayes’ Principles and Methods of Toxicology, 6th ed., Vol. 1. CRC Press: 2184 pp.
[32]Bidié, A. D. P., Adeotı, F. M., Yapo, F. A., Tıekpa, J. W., N’Guessan, J. D., & Djaman, J. A. (2016). Effet de l’extrait total aqueux de Chrysophyllum perpulchrum sur les paramètres hématologiques, biochimiques et la croissance pondérale des rats Wistar sains. Rev. Ivoir. Sci. Technol, 28, 333–348.
[33]Abe, A.S.A., Amonkan, K.A.A., Djetouan, K.M.J., & N’Da, K.P.N. (2020). Phytochemical and acute toxicity study of aqueous extract of Bambusa vulgaris leaves on Wistar rats. African Journal of Biological Sciences, 2(4), 107–114. https://ssrn.com/abstract=3709183
[34]Javalgikar, A., Mahurkar, N., & Keerthi, K. (2021). Hepatoprotective activity of Cynodon dactylon leaf extract against rifampicin-induced liver damage in albino rats. Journal of Ayurvedic and Herbal Medicine, 7(2), 71–76. DOI: 10.31254/jahm.2021.7204.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.