Assessment of the adaptability and spectroscopic characterization of cotton plants and their properties in the semi-arid region of El-Meita, Khenchela (Algeria)
DOI:
https://doi.org/10.22399/ijcesen.3976Keywords:
Cotton fibers, FTIR, soil, Climate conditions, Fiber properties, El MeitaAbstract
Cotton is an important crop for the economy and textile sector in arid and semi-arid areas. This study evaluates the physical and chemical quality of cotton fibers grown in the El Meita region of Khenchela, Algeria, focusing on fiber fineness, length, and strength, as well as chemical analysis of the soil and fibers using Fourier transform infrared spectroscopy (FTIR). Samples taken from several experimental plants showed notable variability in fiber quality, highlighting the impact of local soil and climate conditions. FTIR analysis detected essential organic and inorganic compounds, such as lignin, cellulose, calcium, and silica, revealing positive relationships between various soil elements and the mechanical properties of the fibers. These results provide crucial insights for the selection and improvement of local varieties, enabling increased fiber productivity and quality while promoting sustainable agriculture of cotton in the Khenchela region
References
[1]Dzvene, A. R., Zhou, L., Slayi, M., & Dirwai, T. L. (2025). A scoping review on challenges and measures for climate change in arid and semi-arid agri-food systems. Environmental Systems Research 3: PUP. https://doi.org/10.1007/s43621-025-00945-z.
[2]Kumar, L., Chhogyel, N., Gopalakrishnan, T., Hasan, M. K., Jayasinghe, S. L., Kariyawasam, C. S., Kogo, B. K., & Ratnayake, S. (2022). Climate change and future of agri-food production. In: Future Foods. Cambridge: Academic Press. pp. 49–79.
[3]Bondada, B. R., and Oosterhuis, D. M. (2001). Canopy photosynthesis, specific leaf weight and yield components of cotton under varying nitrogen supply. J. Plant Nutr. 24(3): 469–477. https://doi.org/10.1081/PLN-100104973.
[4]Beyyavaş, V., Cevheri, C. I., & Yılmaz, A. (2024). Effect of sowing time in cotton (Gossypium hirsutum L.) on boll distribution, cellulose ratio and fiber quality. J. Anim. Plant Sci. 34(1): 90–98. https://doi.org/10.36899/JAPS.2024.1.0697.
[5]Tlatlaa, J. S., Tryphone, G. M., & Nassary, E. K. (2023). Effects of sowing dates and phosphorus levels on cotton growth and yield: soil analysis and implications. Front. Sustain. Food Syst. 7: 1298459. https://doi.org/10.3389/fsufs.2023.1298459.
[6]EJF (2007). The deadly chemicals in cotton: A report by the Environmental Justice Foundation in collaboration with Pesticide Action Network. London, UK https://ejfoundation.org/resources/downloads/The-Deadly-Chemicals-in-Cotton.pdf
[7]Li, Z., Wan, S., Chen, G., Han, Y., Lei, Y., Ma, Y., et al. (2023). Effects of irrigation regime on soil hydrothermal microenvironment, cotton biomass, and yield under non-film drip irrigation system in cotton fields in southern Xinjiang, China. Ind. Crops Prod. 198: 116738. https://doi.org/10.1016/j.indcrop.2023.116738
[8]Yehia, W. M. B., Zaazaa, E. I. I., El-Hashash, E. F., Abou El-Enin, M. M., & Shaaban, A. (2024). Genotype-by-environment interaction analysis for cotton seed yield using various biometrical methods under irrigation regimes in a semi-arid region. Arch. Agron. Soil Sci. 70(1): 1–23. https://doi.org/10.1080/03650340.2023.2287759.
[9]Yehia, W. M. B., El-Hashash, E. F., Sherif, M. M. M., & El-Abassy, M. A. A. (2024). Improving the quality and productivity of cotton under a drip irrigation system in Toshka, Egypt. Egypt. J. Agric. Res. 102(3): 448–463. https://doi.org/10.21608/ejar.2024.288608.1543.
[10]Johnson, J., MacDonald, S., Meyer, L., & Soley, G. (2022). The World and United States Cotton Outlook. 9th Annual Agricultural Outlook Forum, United States Department of Agriculture (USDA), [Virtual presentation]. Disponible sur : https://www.usda.gov/sites/default/files/documents/2022AOF-cotton-outlook.pdf.
[11]Voora, V., Bermudez, S., Farrell, J. J., Larrea, C., & Luna, E. (2023). Global Market Report: Cotton Prices and Sustainability. Sustainable Commodities Marketplace Series. International Institute for Sustainable Development (IISD). Disponible sur : https://www.iisd.org/publications/report/global-market-report-cotton-prices-sustainability.
[12]Osteen, C., Gottlieb, J., & Vasavada, U. (2012). Agricultural Resources and Environmental Indicators, 2012 Edition. USDA-ERS Economic Information Bulletin No. 98. United States Department of Agriculture (USDA), Washington, DC, USA. Disponible sur : https://ssrn.com/abstract=2141408 (consulté le 7 août 2024).
[13]Baloch, M. J. (2001). Stability and adaptability analysis of some quantitative traits in upland cotton varieties. Pakistan J. Sci. Indus. Res.: Biological Sciences 44(2): 105–108.
[14]Killi, F., Efe, L., & Mustafayev, S. (2005). Genetic and environmental variability in yield, yield components and lint quality traits of cotton. Int. J. Agric. Biol. 7(6): 1007–1010.
[15]Tuttolomondo, T., Virga, G., Rossini, F., Anastasi, U., Licata, M., Gresta, F., La Bella, S., & Santonoceto, C. (2020). Effects of environment and sowing time on growth and yield of upland cotton (Gossypium hirsutum L.) cultivars in Sicily (Italy). Plants 9(9): 1209. https://doi.org/10.3390/plants9091209
[16]Iqbal, B., Kong, F., Ullah, I., Ali, S., Li, H., Wang, J., Khattak, W. A., & Zhou, Z. (2020). Phosphorus application improves the cotton yield by enhancing reproductive organ biomass and nutrient accumulation in two cotton cultivars with different phosphorus sensitivity. Agronomy 10(2): 153. https://doi.org/10.3390/agronomy10020153
[17]Sedrati, A., Houha, B., Romanescu, G., Sandu, I. G., Diaconu, D. C., & Sandu, I. (2017). Impact of agriculture upon the chemical quality of groundwaters within the Saharian Atlas steppe El Meita (Khenchela Algeria). Rev. Chim. (Bucharest) 68(2) : 420–423. https://doi.org/10.37358/RC.17.2.5467.
[18]Halimi, I., Kara Toumi, F. Z., Lebbal, S., Mari, R., Ghorab, A., & Saidi, F. (2022). Biodiversity of Culicidae (Insecta: Diptera) in the region of Khenchela (northeast Algeria). J. Biores. Manag. 9(3): 79–92.
[19]WorldClim Team. (2020–2025). WorldClim: Global climate and weather data (Version 2.1, historical and future climate surfaces). Disponible sur WorldClim : https://www.worldclim.org/data/index.html
[20]Luo, T., Lu, W., Chen, L., Min, T., Ru, S., Wei, C., & Li, J. (2022). The effects of acidic compost tea on activation of phosphorus, Fe, Zn, and Mn in calcareous soil and cotton (Gossypium hirsutum L.) growth in Xinjiang, China. Journal of Soil Science and Plant Nutrition, 22(4), 3823–3836. DOI: 10.1007/s42729-022-00933-6
[21]Maryum, Z., Luqman, T., Nadeem, S., Khan, S. M. U. D., Wang, B., Ditta, A., & Khan, M. K. R. (2022). An overview of salinity stress, mechanism of salinity tolerance and strategies for its management in cotton. Frontiers in Plant Science, 13, 907937. DOI: 10.3389/fpls.2022.907937
[22]Shalaby, M. (2023). Determine the technological value of cotton fiber using decision making criteria. Acta Scientific Agriculture, 7(12), Article 1324. DOI: 10.31080/ASAG.2023.07.1324
[23]Sutrisno, Soenoko, R., Irawan, Y. S., & Widodo, T. D. (2021). Effect of limestone mass concentration on tensile strength and surface morphology of coconut fiber. IOP Conference Series: Materials Science and Engineering, 1034(1), 012168. DOI: 10.1088/1757-899X/1034/1/012168
[24]Farid, M. Z., Qureshi, K. M., Shah, S. H., Qureshi, A. A., Umair, M., & Shafiq, H. (2020). Foliar application of micronutrients improves growth, productivity and fruit quality of strawberry (Fragaria ananassa Duch). The Journal of Animal and Plant Sciences, 30(4), 905–912. DOI: 10.36899/JAPS.2020.4.0106
[25]Monajjem, S., Soltani, E., Zainali, E., Esfahani, M., Ghaderi-Far, F., & Hosseini Chaleshtori, M. (2022). Seed priming improves the enzymatic and biochemical performance of rice (Oryza sativa L.) during seed germination under low and high temperatures. DOI: 10.21203/rs.3.rs-2314663/v1
[26]Romero-Trigueros, C., Bayona Gambín, J. M., Nortes, P. A., Alarcón, J. J., & Nicolás, E. (2019). Determination of crop water stress index by infrared thermometry in grapefruit trees irrigated with saline reclaimed water combined with deficit irrigation. Remote Sensing, 11(7), 757. DOI: 10.3390/rs11070757
[27]Yao, L., Jiang, Z., Wang, Y., Wan, S., & Xin, X.-F. (2022). High air humidity dampens salicylic acid pathway and plant resistance via targeting of NPR1. DOI: 10.1101/2022.10.28.514180
[28]Ferrante, A., & Mariani, L. (2018). Agronomic management for enhancing plant tolerance to abiotic stresses: High and low values of temperature, light intensity, and relative humidity. Horticulturae, 4(3), 21. DOI: 10.3390/horticulturae4030021.
[29]Radünz, W.C., Sakagami, Y., Haas, R., Petry, A.P., Passos, J.C., Miqueletti, M. and Dias, E. (2020). The variability of wind resources in complex terrain and its relationship with atmospheric stability. Energy Convers Manag., 222 : 113249.DOI:10.1016/j.enconman.2020.113249
[30]Röckert, A., Kullgren, J., & Hermansson, K. (2022). Predicting frequency from the external chemical environment: OH vibrations on hydrated and hydroxylated surfaces. Journal of Chemical Theory and Computation, 18(12), 7949–7962. DOI:10.1021/acs.jctc.2c00135
[31]Capriel, P., Beck, T., Borchert, H., Gronholz, J., & Zachmann, G. (1995). Hydrophobicity of the organic matter in arable soils. Soil Biology and Biochemistry, 27(11), 1453–1458. DOI:10.1016/0038-0717(95)00068-P
[32]Haberhauer, G. F., Rafferty, B., Strebl, F., & Gerzabek, M. H. (1998). Comparison of the composition of forest soil litter derived from different sites at various decompositional stages using FTIR-spectroscopy. Geoderma, 83(3–4), 331–342. DOI:10.1016/S0016-7061(98)00008-1
[33]Linker, R. (2007). Soil classification via mid-infrared spectroscopy. In D. Li, C. Zhao, & S. Wang (Eds.), Computer and Computing Technologies in Agriculture (Vol. 2, pp. 395–402). IFIP International Federation for Information Processing. DOI :10.1007/978-0-387-77253-0_48
[34]Ellerbrock, R. H., Stein, M., & Schaller, J. (2022). Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR. Scientific Reports, 12(1), 11708. DOI:10.1038/s41598-022-15882-4
[35]Volkov, D. S., Rogova, O., & Proskurnin, M. A. (2021). Organic matter and mineral composition of silicate soils: FTIR comparison study by photoacoustic, diffuse reflectance, and attenuated total reflection modalities. Agronomy, 11(9), 1879. DOI:10.3390/agronomy11091879
[36]Zhao, B., Nan, X., Xu, H., Wang, L., & Ma, F. (2017). Sulfate sorption on rape (Brassica campestris L.) straw biochar, loess soil and a biochar–soil mixture. Journal of Environmental Management, 201, 309–314.DOI:10.1016/j.jenvman.2017.06.064
[37]Zhao, T., Xu, S., & Hao, F. (2023). Differential adsorption of clay minerals: Implications for organic matter enrichment. Earth Science Reviews 246: 104598. DOI:10.1016/j.earscirev.2023.104598
[38]Heller, C., Ellerbrock, R., & Rosskopf, N. (2015). Soil organic matter characterization of temperate peatland soil with FTIR‐spectroscopy: Effects of mire type and drainage intensity. European Journal of Soil Science, 66(5), 847–858.
[39]Jumabaev, A., Absanov, A., Hushvaktov, H., & Khamidov, B. (2024). Raman and Fourier transform infrared spectra of C–H and O–H stretching vibrations in ethanol and its aqueous solutions: Experiment and ab initio calculations. Journal of Molecular Structure, Vol. 26, No. 1, pp. 13-19, 2024. DOI : 10.52304/.v26i1.492
[40]Gautam, R., Kumar, N., Lynam, J., & Ali, S. T. (2020). Theoretical and experimental study of choline chloride–carboxylic acid deep eutectic solvents and their hydrogen bonds. Journal of Molecular Structure, 1222(14), 128849. DOI: 10.1016/j.molstruc.2020.128849
[41]Grunenwald, A., Keyser, C., Sautereau, A., Crubézy, E., Ludes, B., & Drouet, C. (2014). Revisiting carbonate quantification in apatite (bio)minerals: A validated FTIR methodology. Journal of Archaeological Science, 49, 134–141.
[42]Baes, A. U., & Bloom, P. R. (1989). Diffuse reflectance and transmission Fourier transform infrared (DRIFT) spectroscopy of humic and fulvic acids. Soil Science Society of America Journal, 53(3), 695–700.
[43]Medimagh, M., Issaoui, N., Gatfaoui, S., Almutairi, S. M., Algarni, H., Bouzidi, A., & Hcini, S. (2021). Impact of non-covalent interactions on FT-IR spectrum and properties of 4-methylbenzylammonium nitrate: A DFT and molecular docking study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 263, 120205. DOI: 10.1016/j.heliyon.2021.e08204
[44]Bruns, E. A., Perraud, V., Zelenyuk, A., Ezell, M. J., Johnson, S. N., Yu, Y., Imre, D., Finlayson-Pitts, B. J., & Alexander, M. L. (2010). Comparison of FTIR and particle mass spectrometry for the measurement of particulate organic nitrates. Environmental Science & Technology, 44(3), 1056–1061.
[45]Ellerbrock, R., Stein, M., Schaller, J., Tanneberger, K., & Fuchs, M. (2022). Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR. Vibrational Spectroscopy, 120, 103365.
[46]Volkov, D., Rogova, O., Proskurnin, M., & Fedotov, P. (2021). Organic matter and mineral composition of silicate soils: FTIR comparison study by photoacoustic, diffuse reflectance, and attenuated total reflection modalities. Applied Spectroscopy, 75(12), 1449–1460.
[47]Li, X., Zhang, Q., Hou, B., Wang, Y., Zhao, F., & Song, S. (2017). Flotation separation of quartz from collophane using an amine collector and its adsorption mechanisms. Powder Technology, 316, 400–406.
[48]Li, L., Wang, W., Jiang, Z., & Kubicki, J. D. (2023). Phosphate in aqueous solution adsorbs on limestone surfaces and promotes dissolution. Water 15(18): 3230.DOI: 10.3390/w15183230
[49]Kokot, S., Czarnik-Matusewicz, B., & Ozaki, Y. (2002). Two-dimensional correlation spectroscopy and principal component analysis studies of temperature-dependent IR spectra of cotton-cellulose. Peptide Science, 67(6), 456–469. DOI:10.1002/bip.10163
[50]Pham Anh, T., Borrel-Flood, C., Vieira da Silva, J., & Mazliak, P. (1985). Effects on lipid metabolism in cotton leaves. Phytochemistry, 24(4), 723–727. DOI:10.1016/S0031-9422(00)84884-0
[51]Wu, X., Hao, Y., Riaz, M., & Jiang, C. (2020). Changes in leaf structure and chemical compositions investigated by FTIR are correlated with different low potassium adaptation of two cotton genotypes. Agronomy, 10(4), 479. DOI:10.3390/agronomy10040479
[52]Zhang, L., Li, X., Zhang, S., Zou, H., & al. (2021). Micro-FTIR combined with curve fitting method to study cellulose crystallinity of developing cotton fibers. Analytical and Bioanalytical Chemistry , 413(2), 483–493. DOI :10.1007/s00216-020-03094-6
[53]Abidi, N., Cabrales, L., Haigler, C. H., & al. (2014). Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydrate Polymers, 100, 1–8. DOI :10.1016/j.carbpol.2013.01.074
[54]Liu, Y., & al. (2013). Recent progress in Fourier Transform Infrared (FTIR) spectroscopy study of compositional, structural and physical attributes of developmental cotton fibers. Materials, 6(1), 299–313. DOI : 10.3390/ma6010299
[55]Liu, Y., Kim, H.-J., Gamble, G. R., Thibodeaux, D. P., & Van Der Sluijs, M. H. J. (2017). Fourier transform infrared spectroscopy (FT-IR) and simple algorithm analysis for rapid and non-destructive assessment of developmental cotton fibers. Sensors, 17(7), 1469. DOI:10.3390/s17071469
[56]He, Z., Nam, S., Fang, D. D., Nie, X., Zhang, X., & He, J. (2021). Surface and thermal characterization of cotton fibers of phenotypes differing in fiber length. Polymers, 13(7), 994. DOI:10.3390/polym13070994
[57]He, Z., Liu, Y., Kim, H. J., Zhang, H., Liu, S., & Yuan, J. (2022). Fourier transform infrared spectral features of plant biomass components during cotton organ development and their biological implications. Journal of Cotton Research, 5(1), 11. DOI:10.1186/s42397-022-00117-8
[58]He, Z., Nam, S., Fang, D. D., Nie, X., Zhang, X., & He, J. (2021). Surface and thermal characterization of cotton fibers of phenotypes differing in fiber length. Polymers, 13(7), 994. DOI :10.3390/polym13070994
[59]He, Z., Liu, Y., Kim, H. J., Zhang, H., Liu, S., & Yuan, J. (2022). Fourier transform infrared spectral features of plant biomass components during cotton organ development and their biological implications. Journal of Cotton Research, 5(1), 11. DOI:10.1186/s42397-022-00117-8
[60]Liu, Y., Chang, S., He, Z., Kim, H. J., Zhang, H., & Yuan, J. (2024). Comprehensive analysis of cotton fiber infrared maturity distribution and its relation to fiber HVI and AFIS properties. Fibers and Polymers, 25(3), 865-878. DOI:10.1007/s12221-023-00448-6
[61]Huang, J., Chen, F., Guo, Y., Gan, X., Yang, M., Zeng, W., Persson, S., Li, J., & Xu, W. (2021). GhMYB7 promotes secondary wall cellulose deposition in cotton fibres by regulating GhCesA gene expression through three distinct cis‐elements. New Phytologist, 232(4), 1718–1733. DOI : 10.1111/nph.17612
[62]Merah, O., Sayed, B., Talou, T., Saad, Z., Cerny, M., Grivot, S., Evon, P., & Hijazi, A. (2020). Biochemical composition of cumin seeds, and biorefining study. Biomolecules, 10(7), 1054. DOI: 10.3390/biom10071054
[63]Baserga, F., Vorkas, A., Crea, F., Schubert, L., Chen, J.-L., Redlich, A., La Greca, M., Storm, J., Oldemeyer, S., Hoffmann, K., Schlesinger, R., & Heberle, J. (2022). Membrane protein activity induces specific molecular changes in nanodiscs monitored by FTIR difference spectroscopy. Frontiers in Molecular Biosciences, 9, 915328. DOI: 10.3389/fmolb.2022.915328
[64]He, Z., Nam, S., Zhang, H., & Olanya, O. M. (2022). Chemical composition and thermogravimetric behaviors of glanded and glandless cottonseed kernels. Molecules, 27(1), 316. DOI: 10.3390/molecules27010316
[65]Jordan, J. H., Cheng, H. N., Easson, M., Yao, W., Condon, B. D., & Gibb, B. C. (2021). Effect of nanocellulose on the properties of cottonseed protein isolate as a paper strength agent. Materials, 14(15), 4128. DOI:10.3390/ma14154128
[66]Zhou, L., Wu, Q., Yang, Y., Li, Q., Li, R., & Ye, J. (2024). Regulation of oil biosynthesis and genetic improvement in plants: Advances and prospects. Genes, 15(9), 1125. DOI: 10.3390/genes15091125
[67]Tessema, T. A., Tadesse, A., Workneh, G. A., & Gabriel, T. (2023). Physicochemical characterization of cellulose and microcrystalline cellulose from Cordia africana Lam. seeds. Journal of Natural Fibers, 20(2), 2198278. DOI: 10.1080/15440478.2023.2198278
[68]Kosmala, M., Milala, J., & Karlińska, E. (2025, April). Polysaccharide composition of dietary fiber during raspberry and blackberry juice production. Preprints. DOI:10.20944/preprints202504.1661.v1
[69]Zhu, F. (2020). Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Carbohydrate Polymers, 248, 116819. DOI : 10.1016/j.carbpol.2020.116819
[70]Bhambhani, S., Kondhare, K., & Giri, A. P. (2021). Diversity in chemical structures and biological properties of plant alkaloids. Molecules, 26(11), 3374. DOI : 10.3390/molecules26113374
[71]Liu, Q., Luo, L., & Zheng, L. (2018). Lignins: Biosynthesis and biological functions in plants. International Journal of Molecular Sciences, 19(2), 335. DOI : 10.3390/ijms19020335
[72]Zardari, M. A., Mukwana, L. C., Nasir, B., Memon, … (2025). Variability in cotton fiber quality under innovated and traditional farming systems. Research Journal for Social Affairs, 3(2), 311-321. DOI : 10.71317/RJSA.003.02.0152
[73]Avci, U., Pattathil, S., Singh, B., Brown, J. L., Hahn, M. G., & Haigler, C. H. (2013). Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan. PLOS ONE, 8(2), e56315.
[74]Liu, Y., Ge, C., Su, Z., Chen, Z., Gao, C., Gong, H., Xu, W., Xu, D., & Liu, K. (2022). Enhancing the spun yarn properties by controlling fiber stress distribution in the spinning triangle with rotary heterogeneous contact surfaces. Polymers, 15(1), 176. DOI : 10.3390/polym15010176
[75]Zhang, T., Qian, N., Zhu, X., Chen, H., Wang, S., Mei, H., & Zhang, Y.-M. (2013). Variations and transmission of QTL alleles for yield and fiber qualities in upland cotton cultivars developed in China. PLOS ONE, 8(2), e57220. DOI: 10.1371/journal.pone.0057220
[76]Nassar, A., Banna, A., Negm, M., El Bagoury, M., & Rania, A. (2022). Technological evaluation for Egyptian cotton advanced strains. Egyptian Academic Journal of Biological Sciences. H. Botany, 13(1), 25–32. DOI : 10.21608/eajbsh.2022.222220
[77]Pit, H.-y. T. (2024). A reflection on Hong Kong’s yellow economic circle. Inter-Asia Cultural Studies, 25(3), 1–20. DOI : 10.1080/14649373.2024.2336729
[78]Bourland, F. M., Hogan, R., Jones, D. C., & Barnes, E. M. (2010). Development and utility of Q-score for characterizing cotton fiber quality. Journal of Cotton Science, 14(2), 53–63.
[79]El Messiry, M., & Abd-Ellatif, S. A. M. (2013). Characterization of Egyptian cotton fibres. Indian Journal of Fibre & Textile Research, 38(1), 109-113.
[80]Ebaido, I. A. (2023). Ranking and fiber quality norms of Egyptian cottons based on AHP and K-means. IOSR Journal of Polymer and Textile Engineering (IOSR-JPTE), 10(1), 1–10.
[81]Sarker, B., & Chakraborty, S. (2021). Discriminant analysis-based modeling of cotton fiber and yarn properties. Research Journal of Textile and Apparel. Advance online publication. DOI:10.1108/RJTA-08-2020-0092
[82]Istipliler, D., Ekizoğlu, M., Çakaloğulları, U., & Tatar, O. (2024). The impact of environmental variability on cotton fiber quality: A comparative analysis of primary cotton-producing regions in Türkiye. Agronomy, 14(6), 1276.DOI : 10.3390/agronomy14061276
[83]Mwamahonje, A., Mdindikasi, Z., Mchau, D., Mwenda, E. T., Sanga, D., Garcia-Oliveira, A. L., & Ojiewo, C. (2024). Advances in sorghum improvement for climate resilience in the global arid and semi-arid tropics: A review. Agronomy, 14(12), 3025. DOI : 10.3390/agronomy14123025
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.