Enhancing The Performance and Sustainability of Lightweight Hebel Bricks Using Local Coco Fiber Additives: A Green Material Innovation for Circular Construction

Authors

  • Don R. G. Kabo
  • Miswar Tumpu Disaster Management Study Program, The Graduate School, Hasanuddin University, Makassar, 90245, Indonesia
  • Denny B. Pinasang
  • Carter Kandou
  • Herman Tumengkol
  • Hoong-Pin Lee

DOI:

https://doi.org/10.22399/ijcesen.4490

Keywords:

lightweight concrete, coco fibre, sustainable construction, green building materials, circular economy, Sustainable Development Goals (SDGs), waste valorisation, low-carbon materials

Abstract

The construction industry faces increasing pressure to adopt sustainable and low-carbon materials, particularly in the production of lightweight concrete such as Hebel bricks. This study investigates the incorporation of locally sourced coco fibre, an agricultural waste derived from coconut husks, as a natural additive in Hebel brick mixtures. The novelty of this research lies in the utilization of coco fibre—abundant, biodegradable, and mechanically resilient—as both a performance-enhancing component and an ecological solution for Indonesia’s construction sector. By improving the mechanical properties of lightweight bricks while promoting resource circularity, this approach contributes to green material innovation and addresses waste valorisation challenges in coconut-producing regions such as North Sulawesi.

An experimental method was employed using five mix proportions with coco fibre contents of 0% (control), 0.5%, 1.0%, 1.5%, and 2.0%. Compressive strength and flexural strength tests were conducted in accordance with ASTM C109 and ASTM C348, respectively, at curing ages of 3, 7, and 28 days. The results demonstrate that compressive strength increased significantly with coco fibre addition up to an optimal content of 1.5%. At 28 days, the optimal mixture achieved a compressive strength of 3.42 MPa, exceeding the minimum requirement of 3 MPa specified by SNI 03-0349-1989 for lightweight concrete blocks. Furthermore, the bulk density of all mixtures remained below 1,000 kg/m³, confirming their suitability for non-structural lightweight construction applications. Overall, this study confirms that coco fibre incorporation enhances mechanical performance while supporting sustainable construction practices, circular economy principles, and the development of environmentally responsible building materials.

References

1. Tombeg, B. A., Tumpu, M., Lonan, T. P., & Sumajouw, J. A. J. (2025). Environmental performance evaluation of geopolymer concrete utilizing industrial by-products and recycled aggregates under variable thermal conditions. Ecological Engineering & Environmental Technology, 26(9), 293–303. https://doi.org/10.12912/27197050/209444.

2. Annisa, R. W. R., Wahab, A. W., Tumpu, M., Demmallino, E. B., Baharuddin, B., & Caronge, M. A. (2025). Overcoming heavy metal pollution from nickel mining wastewater in Indonesia using green chemistry activated rice husk biochar for sustainable remediation. Ecological Engineering & Environmental Technology, 26(9), 278–292. https://doi.org/10.12912/27197050/209753.

3. Dey, P., Paul, A., Dhar, M., Saha, B., & Chakraborty, S. (2025). State-of-art review and future prospects of autoclave aerated concrete for building a sustainable tomorrow. Environmental Development and Sustainability, 27, 123–145. https://doi.org/10.1007/s10668-025-06194-4.

4. Sunarno, Y., Rangan, P. R., Ambun, E., & Tumpu, M. (2024). Mechanical properties of foamed concrete (FC) using high-volume fly ash. International Journal of GEOMATE, 26(118), 141–148. https://doi.org/10.21660/2024.118.g13323.

5. Kumar, M. A., Prasanna, K., Raj, C. C., Parthiban, V., Kulanthaivel, P., Narasimman, S., & Naveen, V. (2022). Bond strength of autoclaved aerated concrete manufactured using partial replacement of fly ash with fibers: A review. Materials Today: Proceedings, 65(Part 2), 581–589. https://doi.org/10.1016/j.matpr.2022.03.191.

6. Sunarno, Y., Tumpu, M., Kandou, C., Kabo, D. R. G., Tumengkol, H., & Rangan, P. R. (2025). Strength and sustainability in concrete: The dual role of fly ash and accelerators in reducing environmental impacts. Engineering, Technology and Applied Science Research, 15(3), 23260–23267. https://doi.org/10.48084/etasr.10451.

7. Martinelli, F. R. B., Ribeiro, F. R. C., Marvila, M. T., Monteiro, S. N., Filho, F. d. C. G., & Azevedo, A. R. G. d. (2023). A review of the use of coconut fiber in cement composites. Polymers, 15(5), Article 1309. https://doi.org/10.3390/polym15051309.

8. Kandou, C., Tumpu, M., Kabo, D. R. G., & Tumengkol, H. (2025). Development of High-Performance Concrete with Advanced Materials for Sustainable Building Applications. Engineering, Technology & Applied Science Research, 15(2), 21482–21487. https://doi.org/10.48084/etasr.10299.

9. Ngui, F., Muhammed, N., Mutunga, F. M., Marangu, J., & Kınotı, I. K. (2022). A review on selected durability parameters on performance of geopolymers containing industrial by-products, agro-wastes and natural pozzolan. Journal of Sustainable Construction Materials and Technologies, 7(4), Article 5, 375–400. https://doi.org/10.47481/jscmt.1190244.

10. Amiruddin, A. A., Parung, H., Tjaronge, M. W., Irmawaty, R., Mansyur, & Tumpu, M. (2022). Influence of prefabricated foam concrete as infill wall on the strength due to cyclic loading. International Journal of GEOMATE, 22(93). https://doi.org/10.21660/2022.93.j2343.

11. Parung, H., Tumpu, M., Tjaronge, M. W., Arwin Amiruddin, A., Walenna, M. A., & Mansyur (2023). Crack Pattern of Lightweight Concrete under Compression and Tensile Test. Annales de Chimie: Science des Materiaux, 47(1), 35-41. https://doi.org/10.18280/acsm.470105.

12. Akbulut, Z. F., Tawfik, T. A., Smarzewski, P., & Guler, S. (2025). Advancing hybrid fiber-reinforced concrete: Performance, crack resistance mechanism, and future innovations. Buildings, 15(8), Article 1247. https://doi.org/10.3390/buildings15081247.

13. ASTM International. (2020). ASTM C109/C109M-20: Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). ASTM International.

14. Badan Standardisasi Nasional. (1989). SNI 03-0349-1989: Tata cara perhitungan harga satuan pekerjaan beton untuk konstruksi bangunan gedung dan perumahan. Badan Standardisasi Nasional.

15. Mansyur, Tumpu, M., Tjaronge, M. W., & Israil. (2025). Experimental investigation of the response of precast foam concrete under monotonic loading. International Journal of GEOMATE, 28(125), 19–26. https://doi.org/10.21660/2025.125.4510.

16. Kumbasaroglu, H., & Kumbasaroglu, A. (2025). Applicability of agro-waste materials in structural systems for building construction: A scoping review. Applied Sciences, 15(1), 71. https://doi.org/10.3390/app15010071.

17. Koval, V., Arsawan, I. W. E., Suryantini, N. P. S., Kovbasenko, S., Fisunenko, N., & Aloshyna, T. (2023). Circular economy and sustainability-oriented innovation: Conceptual framework and energy future avenue. Energies, 16(1), 243. https://doi.org/10.3390/en16010243.

18. Nawab, M. S., Ali, T., Qureshi, M. Z., Zaid, O., Ben Kahla, N., Sun, Y., Anwar, N., & Ajwad, A. (2023). A study on improving the performance of cement-based mortar with silica fume, metakaolin, and coconut fibers. Case Studies in Construction Materials, 19, e02480. https://doi.org/10.1016/j.cscm.2023.e02480.

19. Vijayan, D. S., Gopalaswamy, S., Sivasuriyan, A., Koda, E., Sitek, W., Vaverková, M. D., & Podlasek, A. (2024). Advances and applications of carbon capture, utilization, and storage in civil engineering: A comprehensive review. Energies, 17(23), 6046. https://doi.org/10.3390/en17236046.

20. Badan Standardisasi Nasional. (2000). SNI 03-2834-2000: Tata cara pembuatan rencana campuran beton normal. Badan Standardisasi Nasional.

21. ASTM International. (2019). ASTM C136/C136M-19: Standard test method for sieve analysis of fine and coarse aggregates. ASTM International.

22. ASTM International. (2015). ASTM C128-15: Standard test method for relative density (specific gravity) and absorption of fine aggregate. ASTM International.

23. Badan Standardisasi Nasional. (1996). SNI 03-4142-1996: Tata cara pembuatan rencana campuran beton normal. Badan Standardisasi Nasional.

24. ASTM International. (2017). ASTM C29/C29M-17a: Standard test method for bulk density (“unit weight”) and voids in aggregate. ASTM International.

25. Badan Standardisasi Nasional. (2014). SNI 15-7064-2014: Semen Portland pozzolan—spesifikasi. Badan Standardisasi Nasional.

26. ASTM International. (2013). ASTM C430-13: Standard test method for fineness of hydraulic cement by the 45-μm (No. 325) sieve. ASTM International.

27. ASTM International. (2019). ASTM C191-19: Standard test methods for time of setting of hydraulic cement by Vicat needle. ASTM International.

28. ASTM International, 2022. ASTM C188/C188M-22: Standard test method for density of hydraulic cement. West Conshohocken, PA: ASTM International.

29. ASTM International. (2022). ASTM C188/C188M-22: Standard test method for density of hydraulic cement. ASTM International.

30. ASTM International. (2022). ASTM C114-22: Standard test methods for chemical analysis of hydraulic cement. ASTM International.

31. Ahmad, J., Majdi, A., Al-Fakih, A., Deifalla, A. F., Althoey, F., El Ouni, M. H., & El-Shorbagy, M. A. (2022). Mechanical and durability performance of coconut fiber reinforced concrete: A state-of-the-art review. Materials, 15(10), Article 3601. https://doi.org/10.3390/ma15103601.

32. Noor Azman, N. E. I., Marsi, N., Yusrianto, E., Tuan Ismail, T. N. H., Mohd Rus, A. Z., Hakim Shariff, H., & Ali, A. (2025). Performance autoclaved aerated concrete of crushed coconut shell (AAC-CCS) for AAC board panels. Semarak International Journal of Material Research, 2(1), 52–65. https://doi.org/10.37934/sijmr.2.1.5265a.

33. ASTM International. (2020). ASTM C348-20: Standard test method for flexural strength of hydraulic-cement mortars. ASTM International. ASTM International. (2020). ASTM C348-20: Standard test method for flexural strength of hydraulic-cement mortars. ASTM International.

34. ASTM International. (2020). ASTM C143/C143M-20: Standard test method for slump of hydraulic-cement concrete. ASTM International.

35. Gunwant, D. (2024). Moisture resistance treatments of natural fiber-reinforced composites: A review. Composite Interfaces, 31(8), 979–1047. https://doi.org/10.1080/09276440.2024.2303543.

36. Zhang, J., Heath, A., Ball, R. J., & Paine, K. (2022). Effect of fibre loading on the microstructural, electrical, and mechanical properties of carbon fibre incorporated smart cement-based composites. Frontiers in Materials, 9, Article 1055796. https://doi.org/10.3389/fmats.2022.1055796.

37. Kumar, P., Upadhyay, R., Sharma, K. K., et al. (2025). Mechanical performance of fiber reinforced concrete incorporating rice husk ash and brick aggregate. Innovative Infrastructure Solutions, 10, Article 362. https://doi.org/10.1007/s41062-025-02166-9.

38. Momshad, A. M., Islam, M. H., Datta, S. D., Sobuz, M. H. R., Aayaz, R., Kabbo, M. K. I., & Khan, M. M. H. (2025). Assessing the engineering properties and environmental impact with explainable machine learning analysis of sustainable concrete utilizing waste banana leaf ash as a partial cement replacement. Cleaner Engineering and Technology, 24, 100886. https://doi.org/10.1016/j.clet.2025.100886.

39. Beskopylny, A. N., Shcherban’, E. M., Stel’makh, S. A., Mailyan, L. R., Meskhi, B., Evtushenko, A., El’shaeva, D., & Chernil’nik, A. (2023). Improving the physical and mechanical characteristics of modified aerated concrete by reinforcing with plant fibers. Fibers, 11(4), Article 33. https://doi.org/10.3390/fib11040033.

40. Barman, N. K., Bhattacharya, S. S., & Alagirusamy, R. (2024). Textile structures in concrete reinforcement. Textile Progress, 56(1), 1–229. https://doi.org/10.1080/00405167.2023.2266930.

41. Carlesso, D. M., Cavalaro, S. H. P., Bairán, J. M., & de la Fuente, A. (2025). Flexural fatigue performance of pre-cracked steel fibre reinforced concrete: Experimental program and design-oriented approach. Construction and Building Materials, 467, 140308. https://doi.org/10.1016/j.conbuildmat.2025.140308.

42. Haque, M. I., Ashraf, W., Khan, R. I., & Shah, S. (2022). A comparative investigation on the effects of nanocellulose from bacteria and plant-based sources for cementitious composites. Cement and Concrete Composites, 125, 104316. https://doi.org/10.1016/j.cemconcomp.2021.104316.

43. Ramadan, R., Ghanem, H., Khatib, J. M., & ElKordi, A. M. (2025). Effect of plant-based natural fibers on the mechanical properties and volume change of cement paste. International Journal of Building Pathology and Adaptation, 43(4), 693–711. https://doi.org/10.1108/IJBPA-11-2023-0166.

44. Huang, Y., Tan, J., Xuan, X., Wei, S., Liu, L., Yu, S., & Zheng, G. (2022). Durability of plant fiber reinforced alkali-activated composites. Construction and Building Materials, 314(Part B), Article 125501. https://doi.org/10.1016/j.conbuildmat.2021.125501.

45. Adeyemi, O., Ohakawa, C., Okwandu, G., Iwuanyanwu, C., & Ifechukwu, P. (2024). Affordable housing and resilient design: Preparing low-income housing for climate change impacts. International Journal of Applied Research in Social Sciences, 6(9), 2179–2190. https://doi.org/10.51594/ijarss.v6i9.1585.

46. Fode, T. A., Jande, Y. A. C., & Kivevele, T. (2024). Physical, mechanical, and durability properties of concrete containing different waste synthetic fibers for green environment: A critical review. Heliyon, 10(12), e32950. https://doi.org/10.1016/j.heliyon.2024.e32950.

Downloads

Published

2026-01-03

How to Cite

Don R. G. Kabo, Tumpu, M., Denny B. Pinasang, Carter Kandou, Herman Tumengkol, & Hoong-Pin Lee. (2026). Enhancing The Performance and Sustainability of Lightweight Hebel Bricks Using Local Coco Fiber Additives: A Green Material Innovation for Circular Construction. International Journal of Computational and Experimental Science and Engineering, 12(1). https://doi.org/10.22399/ijcesen.4490

Issue

Section

Research Article