Smart Agriculture in the Fight against Weeds: Analyzing the Impact of Image Quality on Deep Learning Performance
DOI:
https://doi.org/10.22399/ijcesen.4602Keywords:
Smart Agriculture, Internet of Things (IoT), Weed Detection, Data Quality, Deep Learning, Precision FarmingAbstract
Weed management is a critical challenge for sustainable agriculture, driving the adoption of Smart Farming solutions that integrate the Internet of Things (IoT) and deep learning. While significant research focuses on improving object detection algorithms, the influence of data quality from IoT perception devices on system performance remains underexplored. This paper presents a holistic study of an IoT-aligned weed detection framework, using the YOLOv8 model to investigate the impact of image data quality versus quantity. We train and evaluate two identical YOLOv8n models on contrasting datasets: a high-quality, smaller dataset (D1, n=512) and a larger, lower-quality dataset (D2, n=5,061). Our results show a decisive advantage for data quality: the model trained on D1 achieved a mean Average Precision (mAP@50) of 0.90, significantly outperforming the model trained on D2 (mAP@50 of 0.82), alongside higher precision (0.88 vs. 0.74). This empirical evidence underscores that for robust IoT-based detection systems, investing in high-fidelity data acquisition at the Perception Layer is more effective than merely amassing larger volumes of data. The findings offer a practical design principle for developing reliable and efficient smart agriculture solutions, emphasizing the need for system-level optimization beyond algorithmic choice.
References
[1] Adhinata, F. D., Wahyono, & Sumiharto, R. (2024). A Comprehensive Survey on Weed and Crop Classification Using Machine Learning and Deep Learning. Artificial Intelligence in Agriculture, 13, 45–63. DOI: https://doi.org/10.1016/j.aiia.2024.06.005
[2] Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture, 12(10), 1745. DOI: https://doi.org/10.3390/agriculture12101745
[3] Wu, Z., Chen, Y., Zhao, B., Kang, X., & Ding, Y. (2021). Review of Weed Detection Methods Based on Computer Vision. Sensors, 21(11), 3647. DOI: https://doi.org/10.3390/s21113647
[4] Karunathilake, E. M. B. M., Le, A. T., Heo, S., Chung, Y. S., & Mansoor, S. (2023). The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture. Agriculture, 13(8), 1593. DOI: https://doi.org/10.3390/agriculture13081593
[5] Islam, S., Jamwal, S., Mir, M. H., & Khan, Q. R. (2022). IoT-Smart Agriculture: Comparative Study on Farming Applications and Disease Prediction of Apple Crop Using Machine Learning. Iraqi Journal of Science, 5520–5533. DOI: https://doi.org/10.24996/ijs.2022.63.12.37
[6] Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A., & Aggoune, E.-H. M. (2019). Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk. IEEE Access, 7, 129551–129583. DOI: https://doi.org/10.1109/ACCESS.2019.2932609
[7] Qazi, S., Khawaja, B. A., & Farooq, Q. U. (2022). IoT-Equipped and AI-Enabled Next Generation Smart Agriculture: A Critical Review, Current Challenges and Future Trends. IEEE Access, 10, 21219–21235. DOI: https://doi.org/10.1109/ACCESS.2022.3152544
[8] Kattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review on Convolutional Neural Networks (CNN) in Vegetation Remote Sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 24–49. DOI: https://doi.org/10.1016/j.isprsjprs.2020.12.010
[9] Bezas, K., & Filippidou, F. (2023). The Role of Artificial Intelligence and Machine Learning in Smart and Precision Agriculture. The Indonesian Journal of Computer Science, 12(4). DOI: https://doi.org/10.33022/ijcs.v12i4.3278
[10] Quy, V. K., Hau, N. V., Anh, D. V., Quy, N. M., Ban, N. T., Lanza, S., Randazzo, G., & Muzirafuti, A. (2022). IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges. Applied Sciences, 12(7), 3396. DOI: https://doi.org/10.3390/app12073396
[11] Micheni, E., Machii, J., & Murumba, J. (2022). Internet of Things, Big Data Analytics, and Deep Learning for Sustainable Precision Agriculture. *2022 IST-Africa Conference (IST-Africa)*, 1–12. DOI: https://doi.org/10.23919/IST-Africa56635.2022.9845510
[12] Morchid, A., El Alami, R., Raezah, A. A., & Sabbar, Y. (2024). Applications of Internet of Things (IoT) and Sensors Technology to Increase Food Security and Agricultural Sustainability: Benefits and Challenges. Ain Shams Engineering Journal, 15(3), 102509. DOI: https://doi.org/10.1016/j.asej.2023.102509
[13] Sanchez, S. A., Romero, H. J., & Morales, A. D. (2020). A Review: Comparison of Performance Metrics of Pretrained Models for Object Detection Using the TensorFlow Framework. IOP Conference Series: Materials Science and Engineering, 844, 012024. DOI: https://doi.org/10.1088/1757-899X/844/1/012024
[14] Pai, D. G., Kamath, R., & Balachandra, M. (2024). Deep Learning Techniques for Weed Detection in Agricultural Environments: A Comprehensive Review. IEEE Access, 12, 113193–113214. DOI: https://doi.org/10.1109/ACCESS.2024.3418454
[15] Gallo, I., Rehman, A. U., Dehkordi, R. H., Landro, N., La Grassa, R., & Boschetti, M. (2023). Deep Object Detection of Crop Weeds: Performance of YOLOv7 on a Real Case Dataset from UAV Images. Remote Sensing, 15(2), 539. DOI: https://doi.org/10.3390/rs15020539
[16] Hu, K., Wang, Z., Coleman, G., Bender, A., Yao, T., Zeng, S., Song, D., Schumann, A., & Walsh, M. (2024). Deep Learning Techniques for In-Crop Weed Recognition in Large-Scale Grain Production Systems: A Review. Precision Agriculture, 25(1), 1–29. DOI: https://doi.org/10.1007/s11119-023-10073-1
[17] Son, N., Chen, C.-R., & Syu, C.-H. (2024). Towards Artificial Intelligence Applications in Precision and Sustainable Agriculture. Agronomy, 14(2), 239. DOI: https://doi.org/10.3390/agronomy14020239
[18] Naseer, A., Shmoon, M., Shakeel, T., Rehman, S. U., Ahmad, A., & Gruhn, V. (2024). A Systematic Literature Review of the IoT in Agriculture—Global Adoption, Innovations, Security, and Privacy Challenges. IEEE Access, 12, 60986–61021. DOI: https://doi.org/10.1109/ACCESS.2024.3394617
[19] Satav, S. D. (2023). Machine Learning & IOT Based Approaches For Classification In Smart Farming. Journal of Algebraic Statistics, 10(2).
[20] Sharma, A., Jain, A., Gupta, P., & Chowdary, V. (2021). Machine Learning Applications for Precision Agriculture: A Comprehensive Review. IEEE Access, 9, 4843–4873. DOI: https://doi.org/10.1109/ACCESS.2020.3048415
[21] Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., & Traore, D. (2022). Deep Learning for Precision Agriculture: A Bibliometric Analysis. Intelligent Systems with Applications, 16, 200102. DOI: https://doi.org/10.1016/j.iswa.2022.200102
[22] Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A Review on UAV-Based Applications for Precision Agriculture. Information, 10(11), 349. DOI: https://doi.org/10.3390/info10110349
[23] Roslim, M. H. M., Juraimi, A. S., Che’Ya, N. N., Sulaiman, N., Manaf, M. N. H. A., Ramli, Z., & Motmainna, M. (2021). Using Remote Sensing and an Unmanned Aerial System for Weed Management in Agricultural Crops: A Review. Agronomy, 11(9), 1809. DOI: https://doi.org/10.3390/agronomy11091809
[24] Lottes, P., Khanna, R., Pfeifer, J., Siegwart, R., & Stachniss, C. (2017). UAV-Based Crop and Weed Classification for Smart Farming. 2017 IEEE International Conference on Robotics and Automation (ICRA), 3024–3031. DOI: https://doi.org/10.1109/ICRA.2017.7989347
[25] Su, J., Zhu, X., Li, S., & Chen, W.-H. (2023). AI Meets UAVs: A Survey on AI Empowered UAV Perception Systems for Precision Agriculture. Neurocomputing, 518, 242–270. DOI: https://doi.org/10.1016/j.neucom.2022.11.020
[26] Lian, J., & Pereira, J. D. (2024). Editorial: IoT, UAV, BCI Empowered Deep Learning Models in Precision Agriculture. Frontiers in Plant Science, 15, 1399753. DOI: https://doi.org/10.3389/fpls.2024.1399753
[27] Kulkarni, S., & Angadi, S. A. (2019). IOT BASED WEED DETECTION USING IMAGE PROCESSING AND CNN. International Journal of Engineering Applied Sciences and Technology, 4(3), 606–609. DOI: https://doi.org/10.33564/IJEAST.2019.v04i03.089
[28] Babulal, K. S., & Das, A. K. (2022). Deep Learning-Based Object Detection: An Investigation. In Futuristic Trends in Networks and Computing Technologies (pp. 697–711). Springer. DOI: https://doi.org/10.1007/978-981-19-5037-7_50
[29] Lottes, P., Behley, J., Milioto, A., & Stachniss, C. (2018). Fully Convolutional Networks With Sequential Information for Robust Crop and Weed Detection in Precision Farming. IEEE Robotics and Automation Letters, 3(4), 2870–2877. DOI: https://doi.org/10.1109/LRA.2018.2846289
[30] Alam, M., Alam, M. S., Roman, M., Tufail, M., Khan, M. U., & Khan, M. T. (2020). Real-Time Machine-Learning Based Crop/Weed Detection and Classification for Variable-Rate Spraying in Precision Agriculture. 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE), 273–280. DOI: https://doi.org/10.1109/ICEEE49618.2020.9102505
[31] Ying, B., Xu, Y., Zhang, S., Shi, Y., & Liu, L. (2021). Weed Detection in Images of Carrot Fields Based on Improved YOLO V4. Traitement du Signal, 38(2), 341–348. DOI: https://doi.org/10.18280/ts.380211
[32] Liu, Y., Zeng, F., Diao, H., Zhu, J., Ji, D., Liao, X., & Zhao, Z. (2024). YOLOv8 Model for Weed Detection in Wheat Fields Based on a Visual Converter and Multi-Scale Feature Fusion. Sensors, 24(13), 4379. DOI: https://doi.org/10.3390/s24134379
[33] García-Navarrete, O. L., Santamaria, O., Martín-Ramos, P., Valenzuela-Mahecha, M. Á., & Navas-Gracia, L. M. (2024). Development of a Detection System for Types of Weeds in Maize (Zea Mays L.) under Greenhouse Conditions Using the YOLOv5 v7.0 Model. Agriculture, 14(2), 286. DOI: https://doi.org/10.3390/agriculture14020286
[34] Hasan, A. S. M. M., Sohel, F., Diepeveen, D., Laga, H., & Jones, M. G. K. (2021). A Survey of Deep Learning Techniques for Weed Detection from Images. Computers and Electronics in Agriculture, 184, 106067. DOI: https://doi.org/10.1016/j.compag.2021.106067
[35] Murad, N. Y., Mahmood, T., Forkan, A. R. M., Morshed, A., Jayaraman, P. P., & Siddiqui, M. S. (2023). Weed Detection Using Deep Learning: A Systematic Literature Review. Sensors, 23(7), 3670. DOI: https://doi.org/10.3390/s23073670
[36] Vasileiou, M., Kyrgiakos, L. S., Kleisiari, C., Kleftodimos, G., Vlontzos, G., Belhouchette, H., & Pardalos, P. M. (2024). Transforming Weed Management in Sustainable Agriculture with Artificial Intelligence: A Systematic Literature Review towards Weed Identification and Deep Learning. Crop Protection, 176, 106522. DOI: https://doi.org/10.1016/j.cropro.2023.106522
[37] Shahi, T. B., Dahal, S., Sitaula, C., Neupane, A., & Guo, W. (2023). Deep Learning-Based Weed Detection Using UAV Images: A Comparative Study. Drones, 7(10), 624. DOI: https://doi.org/10.3390/drones7100624
[38] Qu, H.-R., & Su, W.-H. (2024). Deep Learning-Based Weed–Crop Recognition for Smart Agricultural Equipment: A Review. Agronomy, 14(2), 363. DOI: https://doi.org/10.3390/agronomy14020363
[39] Khan, Z. (2024). The Integration of Internet of Things (IoT) in Precision Agriculture.
[40] Pal, H., & Tripathi, S. (2022). A Survey on IoT-Based Smart Agriculture to Reduce Vegetable and Fruit Waste. Journal of Physics: Conference Series, 2273(1), 012009. DOI: https://doi.org/10.1088/1742-6596/2273/1/012009
[41] Rizvi, S. M. H., Naseer, A., Rehman, S. U., Akram, S., & Gruhn, V. (2024). Revolutionizing Agriculture: Machine and Deep Learning Solutions for Enhanced Crop Quality and Weed Control. IEEE Access, 12, 11865–11878. DOI: https://doi.org/10.1109/ACCESS.2024.3355017
[42] Ultralytics. YOLOv8 Documentation. https://docs.ultralytics.com/.
[43] Shorewala, S., Ashfaque, A., Sidharth, R., & Verma, U. (2021). Weed Density and Distribution Estimation for Precision Agriculture Using Semi-Supervised Learning. IEEE Access, 9, 27971–27986. DOI: https://doi.org/10.1109/ACCESS.2021.3057912
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.