A Hybrid Monte Carlo–Machine Learning Framework for High-Energy Neutron Shielding Using Boron-Enhanced Concrete

Authors

  • Demet Sariyer
  • Elif Yıldırım

DOI:

https://doi.org/10.22399/ijcesen.4827

Keywords:

High-energy neutron shielding, Boron-enhanced concrete, Monte Carlo simulation, Machine learning, Surrogate modeling

Abstract

Secondary neutrons produced by proton-target interactions in high-energy proton accelerator facilities present a major shielding challenge due to their high penetrability and broad energy spectra. In this study, neutron dose attenuation in B₄C- and FeB-enhanced concretes containing 5%, 10%, and 15% additives was investigated at a proton energy of 1000 MeV using FLUKA-based Monte Carlo (MC) simulations coupled with Machine-learning (ML) surrogate models.MC-generated dose data were used to train log-linear Linear Regression (log-linear LR), K-Nearest Neighbors (KNN), Random Forest (RF), and Gradient Boosting Regressor (GBR) models to enable rapid dose prediction. The results show that RF and GBR achieve the highest predictive accuracy under all configurations, with test-set R² values of approximately 0.98-0.99 in tunnel air and 0.99-0.996 in concrete shielding. In contrast, the LR model performs poorly in shielding regions due to strong nonlinearity, while KNN also provides high predictive accuracy exceeding 90%, albeit with lower performance compared to RF and GBR. A comparative analysis reveals that FeB-enhanced concrete exhibits more complex attenuation behavior due to the combined effects of iron-induced scattering and boron absorption. Overall, the validated hybrid MC-ML framework demonstrates that RF- and GBR-based surrogate models provide a fast, reliable, and computationally efficient approach for neutron dose estimation and shielding optimization in high-energy proton accelerator facilities.

References

[1] Sarıyer, D., 2025. FLUKA Monte Carlo assessment of Fe₂B-based shielding materials for secondary neutrons in a 1000 MeV proton accelerator. International Journal of Computational and Experimental Science and Engineering, 11(4), 9864–9869. https://doi.org/10.22399/ijcesen.4544

[2] Shittu, R.A., Alhamadi, F., Sherief, M., AlFantazi, A., Alkaabi, A.K., 2025. Factors influencing the radiation shielding capacity of concrete exposed to aggressive arid environment: A comprehensive review. International Journal of Concrete Structures and Materials, 19, 91. https://doi.org/10.1186/s40069-025-00817-w

[3] Hartling, K., Yamani, Z., Harrison, G., Ha, H., Ali, F., Anghel, V., 2025. A simulation study of neutron transmission and secondary neutron generation in lithium and boron-based shielding materials. Advances in Space Research. https://doi.org/10.1016/j.asr.2025.12.039

[4] Maldarreh, R.B., Saleh, A., Lotfiaghah, A., Tajidine, S.M., Mansour, F.E., Zakaly, H.M.H., 2025. Achieving synergistic neutron–gamma shielding in G5 composite (65Al–15SiC–20TiC): Density functional performance via Monte Carlo modeling. Applied Radiation and Isotopes, 229, 113553. https://doi.org/10.1016/j.apradiso.2025.113553

[5] Barbhuiya, S., Das, B.B., Norman, P., Qureshi, T., 2024. A comprehensive review of radiation shielding concrete: Properties, design, evaluation, and applications. Structural Concrete. https://doi.org/10.1002/suco.202400519

[6] El-Khayatt, A.M., Akkurt, I., 2013. Photon interaction, energy absorption and neutron removal cross section of concrete including boron and iron additives. Annals of Nuclear Energy, 60, 8–14. https://doi.org/10.1016/j.anucene.2013.04.029

[7] Sarıyer, D., Küçer, R., & Küçer, N., 2015. Neutron shielding properties of concretes containing boron carbide and ferro-boron. Procedia – Social and Behavioral Sciences, 195, 1752-1756. https://doi.org/10.1016/j.sbspro.2015.06.320

[8] Sarıyer, D., A FLUKA-based study on the effect of boron-enhanced concrete on secondary neutron dose under proton beam loss scenarios, International Journal of Natural-Applied Sciences and Engineering 3(1) (2025) 113–119. https://doi.org/10.22399/ijnasen.30

[9] Sarıyer, D., Küçer, R., Küçer, N., 2015. Neutron Shielding Properties of Concrete and Ferro - Boron. ACTA PHYSICA POLONICA A., 127 (2 - B), 201 - 202.

[10] Sarıyer, D., Küçer, R., Küçer, N., 2015. Neutron Shielding Properties of Concretes Containing Boron Carbide and Ferro - Boron. Elsevier Procedia Social and Behavioral Sciences. 195, 1752 - 1756.

[11] Paul, M. B., Dutta Ankan, A., Deb, H., & Ahasan, M. M., 2023. A Monte Carlo simulation model to determine the effective concrete materials for fast neutron shielding. Radiation Physics and Chemistry, 202, 110476. https://doi.org/10.1016/j.radphyschem.2022.110476

[12] Sarıyer, D., 2020. Investigation of Neutron Attenuation through FeB, Fe₂B and Concrete. Acta Physica Polonica A, 137(4), 539-542. https://doi.org/10.12693/APhysPolA.137.539

[13] S. H. Rokni, S. H., Cossairt, J. D., Liu, J. C. Radiation Shielding at High-Energy Electron and Proton Accelerators, Stanford Linear Accelerator Center, 10 December 2007.

[14] Jayaraj, V.V., Padmaprabu, C., Ojha, B.K., Dash, B.S., Padalakshmi, M., Anandaraj, V., Vijay Kumar, R., Vijayaragavan, A., Venkiteswaran, C.N., Karthik, V., Divakar, R., 2021. Irradiation behaviour of ferroboron – An alternate in-core shielding material for sodium-cooled fast reactors. Nuclear Engineering and Design, 377, 111126. https://doi.org/10.1016/j.nucengdes.2021.111126

[15] Hançerlioğulları, A., 2006. Monte Carlo simulation method and MCNP code system. Kastamonu Education Journal, 14(2), 545–556.

[16] A. J. Jinia, S. D. Clarke, J. M. Moran and S. A. Pozzi, “Intelligent Radiation: A review of Machine learning applications in nuclear and radiological sciences”, Annals of Nuclear Energy, 201, 110444, 2024, https://doi.org/10.1016/j.anucene.2024.110444

[17] Chen, L. F., 2025. Machine learning-assisted optimization of modular neutron shielding based on Monte Carlo simulations, arXiv preprint, arXiv:2504.12345, 24 Nisan 2025; son revizyon: 26 Mayıs 2025. https://arxiv.org/abs/2504.12345

[18] Alghamdi, A. A. A., 2024. Machine learning for predicting neutron effective dose”. Applied Sciences, 14(13), 5740,. https://doi.org/10.3390/app14135740

[19] Marcato, D., 2023. Intelligent Control Systems and Machine Learning Approaches for Particle Accelerators. Ph.D. Thesis, Department of Information Engineering, University of Padova, Italy.

[20] Nahool, T. A., Abdelmonem, A. M., Ali, M. S. and Yasser, A. M. 2024. Using machine learning to predict gamma shielding properties: a comparative study, New Journal of Physics, cilt 26, s. 093035. https://doi.org/10.1088/1367-2630/ad4a21

[21] Jinia, A. J., Clarke, S. D., Moran, J. M., Pozzi, S. A., 2024. Intelligent Radiation: A review of Machine Learning applications in nuclear and radiological sciences, Annals of Nuclear Energy, vol. 201, 110444. Available online: February 28, 2024. DOI: https://doi.org/10.1016/j.anucene.2024.110444

[22] Edelen, A. L., Biedron, S. G., Chase, B. E., Edstrom Jr., D., Milton, S. V. and Stabile, P., 2016. Neural Networks for Modeling and Control of Particle Accelerators, IEEE Transactions on Nuclear Science, vol. 63, no. 2, pp. 878–897, Apr. 2016. doi: 10.1109/TNS.2016.2521598

[23] Chowdhury, R.P., Zamora, J., Ginter, T., Bollen, G., 2025. Machine learning in accelerator shielding: Application using convolutional neural networks. Transactions of the American Nuclear Society. https://doi.org/10.13182/T131-4592

[24] Pal Chowdhury, R., Zamora, J.C., Bollen, G., Ginter, T., 2026, Surrogate modeling of Monte Carlo radiation transport with convolutional neural networks for shielding optimization, Nuclear Instruments and Methods in Physics Research B 570, 165909. https://doi.org/10.1016/j.nimb.2025.165909

[25] Puppala, A., 2025. A comprehensive review of linear regression models: Theory, applications, and advanced techniques. International Journal of Machine Learning and Cybernetics (IJMLC), 3(1), 1-6. https://doi.org/10.34218/IJMLC_03_01_001

[26] Sarkar, A., Kashikar, P., 2024. Literature review of implementation of machine learning algorithms for improving the network security. International Journal of Science Academic Research 5 (1), 6915-6922.

[27] Alkharisi, M.K., Dahish, H.A., Youssf, O., 2024, Prediction models for the hybrid effect of nano materials on radiation shielding properties of concrete exposed to elevated temperatures, Case Studies in Construction Materials 21, e03750. https://doi.org/10.1016/j.cscm.2024.e03750

[28] Shen, J., 2017. Log-linear regression, in: Encyclopedia of Database Systems, Springer, New York, USA. https://doi.org/10.1007/978-1-4899-7993-3_543-2

[29] Benoit, K., 2011. Linear regression models with logarithmic transformations, Lecture Notes, London School of Economics and Political Science, London, UK.

[30] Pandey, D., Niwaria, K., & Chourasia, B., 2019. Machine Learning Algorithms: A Review. International Research Journal of Engineering and Technology (IRJET), 6(2), 916. ISSN: 2395-0056 (e-ISSN), 2395-0072 (p-ISSN).

[31] Khatiwada, A., Klasky, M., Lombardi, M., Matheny, J., & Mohan, A., 2023. Machine learning technique for isotopic determination of radioisotopes using HPGe γ-ray spectra. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1046, 168409. https://doi.org/10.1016/j.nima.2023.16840

[32] Rodriguez, S.A., Cho, J., Goes, C.R., Kim, Y., Kim, Y., Lee, S., Yeon, J., 2025. A feasibility study on gradient boosting regressor for subsurface sensor-based surface instability assessment, Land, 14, 565. https://doi.org/10.3390/land1403056

[33] Natekin, A., Knoll, A., 2013, Gradient boosting machines: A tutorial, Frontiers in Neurorobotics 7, Article 21. https://doi.org/10.3389/fnbot.2013.00021

[34] Singh, U., Rizwan, M., Alaraj, M., Alsaidan, I., 2021, A machine learning-based gradient boosting regression approach for wind power production forecasting: A step towards smart grid environments, Energies 14, 5196. https://doi.org/10.3390/en14165196

[35] Kotsiantis , S.B., 2007. Supervised machine learning: A review of classification techniques, Informatica 31, 249-268.

[36] Islam, M.J., Wu, Q.M.J., Ahmadi, M., Sid-Ahmed, M.A., 2010, Investigating the performance of Naïve Bayes classifiers and K-nearest neighbor classifiers, Journal of Convergence Information Technology 5(2), 1-10. https://doi.org/10.4156/jcit.vol5.issue2.15

[37] Anunike, G., Tarabin, M., Hisseine, O., 2025, Machine learning–supported prediction of the radiation-shielding efficiency of ultra-high-performance concrete, Full Paper Transactions, SMiRT 28, Toronto, Canada, August 10-15.

[38] Lattimer, B. Y., Hodges, J. L., & Lattimer, A. M., 2020. Using machine learning in physics-based simulation of fire. Fire Safety Journal, 114, 102991. https://doi.org/10.1016/j.firesaf.2020.102991

[39] Pandey, D., Niwaria, K., & Chourasia, B., 2019. Machine Learning Algorithms: A Review. International Research Journal of Engineering and Technology (IRJET), 6(2), 916. ISSN: 2395-0056 (e-ISSN), 2395-0072 (p-ISSN)

[40] Salazar, J. J., Garland, L., Ochoa, J., & Pyrcz, M. J.,2022. Fair train-test split in machine learning: Mitigating spatial autocorrelation for improved prediction accuracy. Journal of Petroleum Science and Engineering, 209, 109885. https://doi.org/10.1016/j.petrol.2021.109885

[41]Şerife Evrim ARICI, Aslı KARA, Kadir GÜNOĞLU, & İskender AKKURT. (2016). Effects of Different Gamma Ray Doses on In Vitro Potato Production. International Journal of Natural-Applied Sciences and Engineering, 1(1). https://doi.org/10.22399/ijnasen.3

[42]Soyal, H., & Sarıhan, M. (2025). The Place, Importance and Development Approaches of Radiation Safety and Protection Education in Associate Degree Health Programs. International Journal of Sustainable Science and Technology, 3(1). https://doi.org/10.22399/ijsusat.11

[43]Betul Cetin, & Betul Sezer. (2025). Comparison of the radiation shielding effect of travertine and gasconcrete. International Journal of Natural-Applied Sciences and Engineering, 3(1). https://doi.org/10.22399/ijnasen.31

[44]Soyal, H., & Canpolat, M. (2025). Intersections of Ergonomics and Radiation Safety in Interventional Radiology. International Journal of Sustainable Science and Technology, 3(1). https://doi.org/10.22399/ijsusat.12

[45]Sibel ÖZAVCI, & Betül ÇETİN. (2017). Experimental Investigation of Radiation Shielding Effect in Different Doped Slag Concrete. International Journal of Sustainable Science and Technology, 2(1). https://doi.org/10.22399/ijsusat.23

[46]García, R. (2025). Optimization in the Geometric Design of Solar Collectors Using Generative AI Models (GANs). International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.32

[47]Betul Cetin, Arzu Poyraz, & Melek Gul. (2026). Examination of the radiation absorption parameters of CuO coatings prepared at different ratios. International Journal of Sustainable Science and Technology, 4(1). https://doi.org/10.22399/ijsusat.35

[48]Morad Kh. Hamad. (2025). Synergistic Evaluation of Ionizing Radiation Shielding in Novel Lead-Free Alloys Using Geant4 MC toolkit. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.47

[49]Sağlam, F., & Cetin, B. (2025). Investigation of Gamma Shielding Properties of Some Industrial Materials. International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.1357

[50]Nuray Kutu. (2026). Radiation Shielding Properties of recycled waste glass color doped powder cement pastes. International Journal of Applied Sciences and Radiation Research , 3(1). https://doi.org/10.22399/ijasrar.55

[51]AYDIN, H., SÜSOY DOĞAN, G., TEKİN, H. O., ŞEN BAYKAL, D., & İLTUŞ, Y. C. (2025). Examining the Neutron and Gamma Attenuation Characteristics of Various Amorphous Structures with Bioactive Properties. International Journal of Computational and Experimental Science and Engineering, 11(3). https://doi.org/10.22399/ijcesen.2176

[52]Günoğlu, K., & Akkurt, İskender. (2023). Gamma-ray attenuation properties carbide compounds (WC, Mo2C, TiC, SiC, B4C) using Phy-X/PSD software. International Journal of Applied Sciences and Radiation Research , 1(1), 1–8. https://doi.org/10.22399/ijasrar.6

[53]Soyal, H., & Sarıhan, M. (2025). Evaluation of Radiation Protection Knowledge and Attitudes of Health Services Vocational School Students Participating in Practice in Radiated Environments. International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.508

[54]Waheed, F., Mohamed Abdulhusein Mohsin Al-Sudani, & Iskender Akkurt. (2025). The Experimental Enhancing of the Radiation Shield Properties of Some Produced Compounds. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.1

[55]Emikönel, S., & Akkurt, İskender. (2025). Radiation Shielding Properties of B2O3-Bi2O3 Glass . International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.2157

[56]Abuş, F., Gürçalar , A., Günay, O., Tunçman , D., Kesmezacar, F. F., & Demir, M. (2024). Determination of Radiation Dose Levels Incurred by Lenses During Scopy Imaging. International Journal of Applied Sciences and Radiation Research , 1(1). https://doi.org/10.22399/ijasrar.11

[57]Hussein Majid, & Mawada M. Funjan. (2025). Comparison of radiation dose parameters between LDCT and SDCT in pediatric brain CT Protocols. International Journal of Computational and Experimental Science and Engineering, 11(3). https://doi.org/10.22399/ijcesen.3431

[58]Özlen, M. S., Cuma, A. B., Yazıcı, S. D., Yeğin, N., Demir, Özge, Aksoy, H., … Günay, O. (2024). Determination of Radiation Dose Level Exposed to Thyroid in C-Arm Scopy. International Journal of Applied Sciences and Radiation Research , 1(1). https://doi.org/10.22399/ijasrar.13

[59]Nasser Khidhr Alhazmi, Sultan Dagham Alanazi, Hammad Shabeeb A Alrowily, Khaled Fayez Alkhamsan, Fawaz Awad Dahisan Al-Rashidi, Al-Salem Sultan Mohammed, … Ahmed Ayyaf k AlQusayri. (2026). Radiation Safety Compliance and Protective Practices Among Radiologic Technologists. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.4664

[60]Vural, M., Kabaca, A., Aksoy, S. H., Demir, M., Karaçam, S. Çavdar, Ulusoy, İdil, … Günay, O. (2025). Determination Of Radiation Dose Levels to Which Partois And Spinal Cord (C1-C2) Regions Are Exposed In Computed Tomography Brain Imaging. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.17

Downloads

Published

2026-01-29

How to Cite

Demet Sariyer, & Elif Yıldırım. (2026). A Hybrid Monte Carlo–Machine Learning Framework for High-Energy Neutron Shielding Using Boron-Enhanced Concrete. International Journal of Computational and Experimental Science and Engineering, 12(1). https://doi.org/10.22399/ijcesen.4827

Issue

Section

Research Article