Novel Architecture For EEG Emotion Classification Using Neurofuzzy Spike Net

Authors

  • S. Krishnaveni Builders Engineering College
  • R. Renuga Devi SRM Institute of Science and Technology
  • Sureshraja Ramar Lead Data Engineer, Optum, 9900 Bren Rd East, Minnetonka, MN,USA,
  • S.S.Rajasekar Bannari Amman institute of technology

DOI:

https://doi.org/10.22399/ijcesen.829

Keywords:

Spiking Neural Networks, Fuzzy Hierarchical Attention Membership, Neuro Fuzzy SpikeNet, Temporal Pattern Detection, Wearable Devices

Abstract

Emotion recognition from Electroencephalogram (EEG) signals is one of the fastest-growing and challenging fields, with a huge prospect for future application in mental health monitoring, human-computer interaction, and personalized learning environments. Conventional Neural Networks (CNN) and traditional signal processing techniques have usually been performed for EEG emotion classification, which face difficulty in capturing complicated temporal dynamics and inherent uncertainty in EEG signals. The proposed work overcomes challenges using a new architecture merging Spiking Neural Networks (SNN) with a Fuzzy Hierarchical Attention Membership (FHAM), the NeuroFuzzy SpikeNet (NFS-Net). NFS-Net takes advantage of SNNs' event-driven nature in the processing of EEG signals, which are treated independently as asynchronous, spike-based events like the biological neurons. It allows capturing temporal patterns in EEG data with high precision, which is rather important for correct emotion recognition. The local spiking feature of SNNs encourages sparse coding, making the whole system computational power and energy highly effective and it is very suitable for wearable devices in real-time applications.

References

Ma, W., Zheng, Y., Li, T., Li, Z., Li, Y., & Wang, L. (2024). A comprehensive review of deep learning in EEG-based emotion recognition: classifications, trends, and practical implications. PeerJ Computer Science. 10, e2065. DOI: 10.7717/peerj-cs.2065 DOI: https://doi.org/10.7717/peerj-cs.2065

Nandi, A., Xhafa, F., Subirats, L., & Fort, S. (2021). Real-time emotion classification using eeg data stream in e-learning contexts. Sensors. 21(5), 1589. DOI:10.3390/s21051589 DOI: https://doi.org/10.3390/s21051589

Farokhah, L., Sarno, R., & Fatichah, C. (2024). EEG-Based Emotion Classification: A Biologically Informed Channel Selection Approach. International Journal of Intelligent Engineering & Systems. 17(1):856-868. DOI: 10.22266/ijies2024.0229.71 DOI: https://doi.org/10.22266/ijies2024.0229.71

Mahmoud, A., Amin, K., Al Rahhal, M. M., Elkilani, W. S., Mekhalfi, M. L., & Ibrahim, M. (2023). A CNN Approach for Emotion Recognition via EEG. Symmetry. 15(10), 1822. DOI: 10.3390/sym15101822 DOI: https://doi.org/10.3390/sym15101822

Suhaimi, N. S., Mountstephens, J., & Teo, J. (2020). EEG‐based emotion recognition: a state‐of‐the‐art review of current trends and opportunities. Computational intelligence and neuroscience. 2020(1), 8875426. DOI: 10.1155/2020/8875426 DOI: https://doi.org/10.1155/2020/8875426

Bardak, F. K., Seyman, M. N., & Temurtaş, F. (2024). Adaptive neuro-fuzzy based hybrid classification model for emotion recognition from EEG signals. Neural Computing and Applications. 36: 9189-9202. DOI:10.1007/s00521-024-09573-6 DOI: https://doi.org/10.1007/s00521-024-09573-6

Wei-Long Zheng, Wei Liu, Yifei Lu, Bao-Liang Lu, and Andrzej Cichocki. (2018). Emotion Meter: A Multimodal Framework for Recognizing Human Emotions. IEEE Transactions on Cybernetics. 49(3): 1110-1122. DOI: 10.1109/TCYB.2018.2797176 DOI: https://doi.org/10.1109/TCYB.2018.2797176

Asif, M., Ali, N., Mishra, S., Dandawate, A., & Tiwary, U. S. (2024). Deep fuzzy framework for emotion recognition using eeg signals and emotion representation in type-2 fuzzy vad space. arXiv preprint arXiv:2401.07892. DOI:10.48550/arXiv.2401.07892

Dhara, T., Singh, P. K., & Mahmud, M. (2024). A fuzzy ensemble-based deep learning model for EEG-based emotion recognition. Cognitive Computation. 16(3), 1364-1378. DOI: 10.1007/s12559-023-10171-2 DOI: https://doi.org/10.1007/s12559-023-10171-2

Sudha, T., & Bharathi, V. (2024). Neuro-Fuzzy Artificial Intelligent Modeling for Cognitive State Classification Using EEG Signal Analysis. SN Computer Science. 5(6), 792. DOI:10.1007/s42979-024-03173-w DOI: https://doi.org/10.1007/s42979-024-03173-w

Kaya, Ü., Akay, D., & Ayan, S. Ş. (2024). EEG-Based Emotion Recognition in Neuromarketing Using Fuzzy Linguistic Summarization. IEEE Transactions on Fuzzy Systems. 99: 1-12. DOI:10.1109/TFUZZ.2024.3392495 DOI: https://doi.org/10.1109/TFUZZ.2024.3392495

Versaci, M., & La Foresta, F. (2024). EEG Data Analysis Techniques for Precision Removal and Enhanced Alzheimer’s Diagnosis: Focusing on Fuzzy and Intuitionistic Fuzzy Logic Techniques. Signals. 5(2), 343-381. DOI: 10.3390/signals5020018 DOI: https://doi.org/10.3390/signals5020018

Khalaf, O. I., Srinivasan, D., Algburi, S., Vellaichamy, J., Selvaraj, D., Sharif, M. S., & Elmedany, W. (2024). Elevating metaverse virtual reality experiences through network‐integrated neuro‐fuzzy emotion recognition and adaptive content generation algorithms. Engineering Reports. e12894.6(11). DOI:10.1002/eng2.12894 DOI: https://doi.org/10.1002/eng2.12894

Singh, J. K., & Kakkar, D. (2024). Hybrid similarity based feature selection and Cascade deep maxout fuzzy network for Autism Spectrum Disorder detection using EEG signal. Computational Biology and Chemistry. 113(1): 108177. DOI:10.1016/j.compbiolchem.2024.108177 DOI: https://doi.org/10.1016/j.compbiolchem.2024.108177

Palanisamy, K. K., & Rengaraj, A. (2024). Detection of Anxiety-Based Epileptic Seizures in EEG Signals Using Fuzzy Features and Parrot Optimization-Tuned LSTM. Brain Sciences. 14(8), 848. DOI: 10.3390/brainsci14080848 DOI: https://doi.org/10.3390/brainsci14080848

Al-Asadi, A. W., Salehpour, P., & Aghdasi, H. S. (2024). A robust semi-supervised deep learning approach for emotion recognition using EEG signals. International Journal of Machine Learning and Cybernetics. 15: 4445-4458. DOI: 10.1007/s13042-024-02158-8 DOI: https://doi.org/10.1007/s13042-024-02158-8

Upadhyay, P. K., & Nagpal, C. (2021). Time-frequency analysis and fuzzy-based detection of heat-stressed sleep EEG spectra. Medical & Biological Engineering & Computing. 59(1): 23-39. DOI: 10.1007/s11517-020-02278-7 DOI: https://doi.org/10.1007/s11517-020-02278-7

Xing, M., Hu, S., Wei, B., & Lv, Z. (2022). Spatial-frequency-temporal convolutional recurrent network for olfactory-enhanced EEG emotion recognition. Journal of Neuroscience Methods. 376: 109624. DOI: 10.1016/j.jneumeth.2022.109624 DOI: https://doi.org/10.1016/j.jneumeth.2022.109624

Chen, L., Wu, M., Pedrycz, W., Hirota, K., Chen, L., Wu, M., ... & Hirota, K. (2021). Two-Stage Fuzzy Fusion Based-Convolution Neural Network for Dynamic Emotion Recognition. Emotion Recognition and Understanding for Emotional Human-Robot Interaction Systems. 91-114. DOI:10.1007/978-3-030-61577-2_7 DOI: https://doi.org/10.1007/978-3-030-61577-2_7

Lin, C. J., Lin, C. J., & Lin, X. Q. (2023). Automatic sleep stage classification using a Taguchi-based multiscale convolutional compensatory fuzzy neural network. Applied Sciences. 13(18), 10442. DOI:10.3390/app131810442 DOI: https://doi.org/10.3390/app131810442

Davoodi, R., & Moradi, M. H. (2023). A Novel Approach for Non-linear Deep Fuzzy Rule-Based Model and Its Applications in Biomedical Analyses. In Fusion of Machine Learning Paradigms: Theory and Applications (pp. 63-103). Cham: Springer International Publishing. DOI:10.1007/978-3-031-22371-6_4 DOI: https://doi.org/10.1007/978-3-031-22371-6_4

Zhang, Z., Wang, H., You, Q., Chen, L., & Ning, H. (2024). A novel temporal adaptive fuzzy neural network for facial feature based fatigue assessment. Expert Systems with Applications. 252(4): 124124. DOI:10.1016/j.eswa.2024.124124 DOI: https://doi.org/10.1016/j.eswa.2024.124124

Paç, A. B., & Yakut, B. (2024). Assessing the Profit Impact of ARIMA and Neural Network Demand Forecasts in Retail Inventory Replenishment. International Journal of Computational and Experimental Science and Engineering, 10(4);811-826. https://doi.org/10.22399/ijcesen.439 DOI: https://doi.org/10.22399/ijcesen.439

Machireddy, C., & Chella, S. (2024). Reconfigurable Acceleration of Neural Networks: A Comprehensive Study of FPGA-based Systems. International Journal of Computational and Experimental Science and Engineering, 10(4);1007-1014. https://doi.org/10.22399/ijcesen.559 DOI: https://doi.org/10.22399/ijcesen.559

TOPRAK, A. (2024). Determination of Colorectal Cancer and Lung Cancer Related LncRNAs based on Deep Autoencoder and Deep Neural Network. International Journal of Computational and Experimental Science and Engineering, 10(4);1893-1900. https://doi.org/10.22399/ijcesen.636 DOI: https://doi.org/10.22399/ijcesen.636

Bolleddu Devananda Rao, & K. Madhavi. (2024). BCDNet: A Deep Learning Model with Improved Convolutional Neural Network for Efficient Detection of Bone Cancer Using Histology Images. International Journal of Computational and Experimental Science and Engineering, 10(4);988-998. https://doi.org/10.22399/ijcesen.430 DOI: https://doi.org/10.22399/ijcesen.430

Radhi, M., & Tahseen, I. (2024). An Enhancement for Wireless Body Area Network Using Adaptive Algorithms. International Journal of Computational and Experimental Science and Engineering, 10(3);388-396. https://doi.org/10.22399/ijcesen.409 DOI: https://doi.org/10.22399/ijcesen.409

Sashi Kanth Betha. (2024). ResDenseNet:Hybrid Convolutional Neural Network Model for Advanced Classification of Diabetic Retinopathy(DR) in Retinal Image Analysis. International Journal of Computational and Experimental Science and Engineering, 10(4);1624-1636. https://doi.org/10.22399/ijcesen.693 DOI: https://doi.org/10.22399/ijcesen.693

T. Deepa, & Ch. D. V Subba Rao. (2025). Brain Glial Cell Tumor Classification through Ensemble Deep Learning with APCGAN Augmentation. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.803

T. Deepa, & Ch. D. V Subba Rao. (2025). Brain Glial Cell Tumor Classification through Ensemble Deep Learning with APCGAN Augmentation. International Journal of Computational and Experimental Science and Engineering, 11(1);144-161. https://doi.org/10.22399/ijcesen.803 DOI: https://doi.org/10.22399/ijcesen.803

P. Padma, & G. Siva Nageswara Rao. (2024). CBDC-Net: Recurrent Bidirectional LSTM Neural Networks Based Cyberbullying Detection with Synonym-Level N-Gram and TSR-SCSOFeatures. International Journal of Computational and Experimental Science and Engineering, 10(4);1486-1500. https://doi.org/10.22399/ijcesen.623 DOI: https://doi.org/10.22399/ijcesen.623

Nagalapuram, J., & S. Samundeeswari. (2024). Genetic-Based Neural Network for Enhanced Soil Texture Analysis: Integrating Soil Sensor Data for Optimized Agricultural Management. International Journal of Computational and Experimental Science and Engineering, 10(4);962-970. https://doi.org/10.22399/ijcesen.572 DOI: https://doi.org/10.22399/ijcesen.572

Sreetha E S, G Naveen Sundar, & D Narmadha. (2024). Enhancing Food Image Classification with Particle Swarm Optimization on NutriFoodNet and Data Augmentation Parameters. International Journal of Computational and Experimental Science and Engineering, 10(4);718-730. https://doi.org/10.22399/ijcesen.493 DOI: https://doi.org/10.22399/ijcesen.493

DAYIOĞLU, M., & ÜNAL, R. (2024). Comparison of Different Forecasting Techniques for Microgrid Load Based on Historical Load and Meteorological Data. International Journal of Computational and Experimental Science and Engineering, 10(4);1078-1084. https://doi.org/10.22399/ijcesen.238 DOI: https://doi.org/10.22399/ijcesen.238

U. S. Pavitha, S. Nikhila, & Mohan, M. (2024). Hybrid Deep Learning Based Model for Removing Grid-Line Artifacts from Radiographical Images. International Journal of Computational and Experimental Science and Engineering, 10(4);763-774. https://doi.org/10.22399/ijcesen.514 DOI: https://doi.org/10.22399/ijcesen.514

Johnsymol Joy, & Mercy Paul Selvan. (2025). An efficient hybrid Deep Learning-Machine Learning method for diagnosing neurodegenerative disorders. International Journal of Computational and Experimental Science and Engineering, 11(1);97-108. https://doi.org/10.22399/ijcesen.701 DOI: https://doi.org/10.22399/ijcesen.701

Sunandha Rajagopal, & N. Thangarasu. (2024). The Impact of Clinical Parameters on LSTM-based Blood Glucose Estimate in Type 1 Diabetes . International Journal of Computational and Experimental Science and Engineering, 10(4);1233-1241. https://doi.org/10.22399/ijcesen.656 DOI: https://doi.org/10.22399/ijcesen.656

Naresh Babu KOSURI, & Suneetha MANNE. (2024). Revolutionizing Facial Recognition: A Dolphin Glowworm Hybrid Approach for Masked and Unmasked Scenarios. International Journal of Computational and Experimental Science and Engineering, 10(4);1015-1031. https://doi.org/10.22399/ijcesen.560 DOI: https://doi.org/10.22399/ijcesen.560

Robert, N. R., A. Cecil Donald, & K. Suresh. (2025). Artificial Intelligence Technique Based Effective Disaster Recovery Framework to Provide Longer Time Connectivity in Mobile Ad-hoc Networks. International Journal of Computational and Experimental Science and Engineering, 11(1);87-96. https://doi.org/10.22399/ijcesen.713 DOI: https://doi.org/10.22399/ijcesen.713

Downloads

Published

2025-01-07

How to Cite

S. Krishnaveni, Devi, R. R., Ramar, S., & S.S.Rajasekar. (2025). Novel Architecture For EEG Emotion Classification Using Neurofuzzy Spike Net. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.829

Issue

Section

Research Article