An Efficient Nano Scale Sequential Circuits with Clock Inherent Capability in QCA For Fast Computation Paradigm
DOI:
https://doi.org/10.22399/ijcesen.840Keywords:
D type Flip Flop (DFF), QCA Technology, Pulse Generator, QCA Designer, E toolAbstract
Quantum-Dot Cellular Automata is a cutting-edge nanotechnology emerging in the globe, has supplanted the conventional CMOS technologies. Because it doesn't use electric current, this method uses less power because of the Coulomb interaction. This sequential circuit design concept is the most challenging approach in the field of QCA technology. In this proposed study, to design a novel D type flip-flop with pulse generator is included. This plan involves the design of n-bit counter using frequency divider approach. In this approach a novel D flip-flop worked with pulse generator. The QCA Designer, which compares the simulation findings with the suggested constructed circuits, is used to implement the suggested technique. The QCA Designer E tool is used to verify the power usage, which forms the basis of the performance analysis. The suggested plan provides the lowest power and improved performance factors based on the examination of the current approaches.
References
Abutaleb, M. M. (2017). Robust and efficient quantum-dot cellular automata synchronous counters. Microelectronics Journal. 61;6-14. https://doi.org/10.1016/j.mejo.2016.12.013. DOI: https://doi.org/10.1016/j.mejo.2016.12.013
Orlov, A. O., Amlani, I., Bernstein, G. H., Lent, C. S., & Snider, G. L. (1997). Realization of a Functional Cell for Quantum-Dot Cellular Automata. Science. 277(5328);928-930. https://doi.org/10.1126/science.277.5328.928. DOI: https://doi.org/10.1126/science.277.5328.928
Amlani, I., Orlov, A. O., Toth, G., Bernstein, G. H., Lent, C. S., & Snider, G. L. (1999). Digital Logic Gate Using Quantum-Dot Cellular Automata. Science. 284(5412);289-291. https://doi.org/10.1126/science.284.5412.289. DOI: https://doi.org/10.1126/science.284.5412.289
Amlani, I., Orlov, A. O., Kummamuru, R. K., Bernstein, G. H., Lent, C. S., & Snider, G. L. (2000). Experimental demonstration of a leadless quantum-dot cellular automata cell. Applied Physics Letters. 77(5);738-740. https://doi.org/10.1063/1.127103. DOI: https://doi.org/10.1063/1.127103
Angizi, S., Navi, K., Sayedsalehi, S., & Navin, A. H. (2014). Efficient Quantum Dot Cellular Automata Memory Architectures Based on the New Wiring Approach. Journal of Computational and Theoretical Nanoscience. 11(11);2318-2328. https://doi.org/10.1166/jctn.2014.3646. DOI: https://doi.org/10.1166/jctn.2014.3646
Angizi, S., Sayedsalehi, S., Roohi, A., Bagherzadeh, N., & Navi, K. (2015). Design and verification of new n-bit quantum-dot synchronous counters using majority function-based JK flip-flops. Journal of Circuits, Systems, and Computers. 24;1550153:1-17. https://doi.org/10.1142/S0218126615501534. DOI: https://doi.org/10.1142/S0218126615501534
Sen, B., Dutta, M., Goswami, M., & Sikdar, B. K. (2014). Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectronics Journal. 45(11);1522-1532. https://doi.org/10.1016/j.mejo.2014.08.012 DOI: https://doi.org/10.1016/j.mejo.2014.08.012
Compano, R., Molenkamp, L., & Paul, D. J. (2000). Technology Roadmap for Nanoelectronics. European Commission IST Programme, Future and Emerging Technologies. 1-81. https://doi.org/10.13140/RG.2.2.33846.06727.
Dehkordi, M. A., Shamsabadi, A. S., Ghahfarokhi, B. S., & Vafaei, A. (2011). Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata. Microelectronics Journal. 42;701-708. https://doi.org/10.1016/j.mejo.2011.02.006. DOI: https://doi.org/10.1016/j.mejo.2011.02.006
Goswami, M., Kumar, B., Tibrewal, H., & Mazumdar, S. (2014). Efficient realization of digital logic circuit using QCA multiplexer. IEEE 2nd International Conference on Business Information Management (ICBIM). 165-170. https://doi.org/10.1109/ICBIM.2014.6970972. DOI: https://doi.org/10.1109/ICBIM.2014.6970972
Hashemi, S., & Navi, K. (2012). New robust QCA D flip-flop and memory structures. Microelectronics Journal. 43;929-940. https://doi.org/10.1016/j.mejo.2012.10.007. DOI: https://doi.org/10.1016/j.mejo.2012.10.007
Hu, X. S., Crocker, M., Niemier, M., Yan, M., & Bernstein, G. (2006). PLAs in Quantum-dot Cellular Automata. IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures. 242-250. https://doi.org/10.1109/isvlsi.2006.73. DOI: https://doi.org/10.1109/ISVLSI.2006.73
Iqbal Reshi, J., Bandy, M. T., Khan, F., & Day, A. (2015). Sequential circuit design using quantum-dot cellular automata. International Conference in Commune. 316-318. https://doi.org/10.13140/RG.2.1.1759.4326.
Kim, K., Wu, K., & Karri, R. (2006). Quantum-dot cellular automata design guideline. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. 89;1607-1614. https://doi.org/10.1093/ietfec/e89-a.6.1607. DOI: https://doi.org/10.1093/ietfec/e89-a.6.1607
Lent, C. S., Liu, M., & Lu, Y. (2006). Bennett clocking of quantum dot cellular automata and the limits to binary logic scaling. Nanotechnology. 17(16);4240-4251. https://doi.org/10.1088/0957-4484/17/16/040. DOI: https://doi.org/10.1088/0957-4484/17/16/040
Lent, C. S., Tougaw, P. D., & Porod, W. (2003). Quantum-Dot Cellular Automata. In J. P. Bird (Ed.), Electron Transport in Quantum Dots. Springer. 397-431. https://doi.org/10.1007/978-1-4615-0437-5_10. DOI: https://doi.org/10.1007/978-1-4615-0437-5_10
Mohammadi, M., Mohammadi, M., & Gorgin, S. (2016). An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectronics Journal. 50;35-43. https://doi.org/10.1016/j.mejo.2016.02.004. DOI: https://doi.org/10.1016/j.mejo.2016.02.004
Ravichandran, R., Lim, S. K., & Niemier, M. (2005). Automatic cell placement for quantum-dot cellular automata. Integration, the VLSI Journal. 38;541-548. https://doi.org/10.1016/j.vlsi.2004.07.002. DOI: https://doi.org/10.1016/j.vlsi.2004.07.002
Rezaei, A. (2018). Design and test of new robust QCA sequential circuits. International Journal of Nanoscience and Nanotechnology. 14(4);297-306.
Sabbaghi-Nadooshan, R., & Kianpour, M. (2014). A novel QCA implementation of MUX-based universal shift register. Journal of Computational Electronics. 13;198-210. https://doi.org/10.1007/s10825-013-0500-9. DOI: https://doi.org/10.1007/s10825-013-0500-9
Sheikhfaal, S., Angizi, S., Sarmadi, S. M. H., & Sayedsalehi, S. (2015). Designing efficient QCA logical circuits with power dissipation analysis. Microelectronics Journal. 46(6);462-471. https://doi.org/10.1016/j.mejo.2015.03.016. DOI: https://doi.org/10.1016/j.mejo.2015.03.016
Shamsabadi, A. S., Ghahfarokhi, B. S., Zamanifar, K., & Movahedinia, N. (2009). Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study. Journal of Systems Architecture. 55(3);180-187. https://doi.org/10.1016/j.sysarc.2008.11.001. DOI: https://doi.org/10.1016/j.sysarc.2008.11.001
Sheikhfaal, S., Navi, K., Angizi, S., & Navin, A. H. (2015). Designing High Speed Sequential Circuits by Quantum-Dot Cellular Automata: Memory Cell and Counter Study. Quantum Matter. 4(2);190-197. https://doi.org/10.1166/qm.2015.1192. DOI: https://doi.org/10.1166/qm.2015.1192
Taskin, B., & Hong, B. (2008). Improving Line-Based QCA Memory Cell Design Through Dual Phase Clocking. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 16(12);1648-1656. https://doi.org/10.1109/tvlsi.2008.2003171. DOI: https://doi.org/10.1109/TVLSI.2008.2003171
Tóth, G., & Lent, C. S. (1999). Quasiadiabatic switching for metal-island quantum-dot cellular automata. Journal of Applied Physics. 85(5);2977-2984. https://doi.org/10.1063/1.369063. DOI: https://doi.org/10.1063/1.369063
Vankamamidi, V., Ottavi, M., & Lombardi, F. (2008). Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 27(1);34-44. https://doi.org/10.1109/TCAD.2007.907020. DOI: https://doi.org/10.1109/TCAD.2007.907020
Vankamamidi, V., Ottavi, M., & Lombardi, F. (2005). A line-based parallel memory for QCA implementation. IEEE Transactions on Nanotechnology. 4;690-698. https://doi.org/10.1109/TNANO.2005.858589. DOI: https://doi.org/10.1109/TNANO.2005.858589
Vankamamidi, V., Ottavi, M., & Lombardi, F. (2008). A Serial Memory by Quantum-Dot Cellular Automata (QCA). IEEE Transactions on Computers. 57(5);606-618. https://doi.org/10.1109/tc.2007.70831. DOI: https://doi.org/10.1109/TC.2007.70831
Vetteth, K., Walus, K., Dimitrov, V. S., & Jullien, G. A. (2003). Quantum-dot cellular automata of flip-flops. ATIPS Laboratory.
Wang, S., & Cai, L. (2007). Novel exclusive-OR gate and full adder implementation using quantum cellular automata. Solid-State Phenomena. 121-123;565-569. https://doi.org/10.4028/www.scientific.net/SSP.121-123.565. DOI: https://doi.org/10.4028/www.scientific.net/SSP.121-123.565
Wang, W., Walus, K., & Jullien, G. A. (2003). Quantum-Dot Cellular Automata Adders. Proceedings of the Third IEEE Conference on Nanotechnology. 461-464. https://doi.org/10.1109/NANO.2003.1231818. DOI: https://doi.org/10.1109/NANO.2003.1231818
Yang, X., Cai, L., Zhao, X., & Zhang, N. (2010). Design and simulation of sequential circuits in quantum-dot cellular automata: falling edge-triggered flip-flop and counter study. Microelectronics Journal. 41;56-63. https://doi.org/10.1016/j.asej.2017.05.010. DOI: https://doi.org/10.1016/j.mejo.2009.12.008
Praveen Kumar Lendale, N.M Nandhitha, & Sravanthi Chutke. (2024). Fusion of Wiener Filtering and BM3D Denoising for Improved Image Restoration. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.702 DOI: https://doi.org/10.22399/ijcesen.702
GUNDA, P., & Thirupathi Rao KOMATI. (2024). Integrating Self-Attention Mechanisms For Contextually Relevant Information In Product Management. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.651 DOI: https://doi.org/10.22399/ijcesen.651
PATHAPATI, S., N. J. NALINI, & Mahesh GADIRAJU. (2024). Comparative Evaluation of EEG signals for Mild Cognitive Impairment using Scalograms and Spectrograms with Deep Learning Models. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.534 DOI: https://doi.org/10.22399/ijcesen.534
ÖZNACAR, T., & ERGENE, N. (2024). A Machine Learning Approach to Early Detection and Malignancy Prediction in Breast Cancer. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.516 DOI: https://doi.org/10.22399/ijcesen.516
Taşkaya, S., Wu, D., Kurt, M., Liao, Y., Xu, J., & Liao, W. (2024). Exploring the Application of Building Information Modeling (BIM) in Town Planning: Key Roles in the Relationship Between Buildings and Parcels. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.459 DOI: https://doi.org/10.22399/ijcesen.459
Kılıçarslan, M. (2024). The Effect of Emotional Intelligence on Social Media Advertising Perception. International Journal of Computational and Experimental Science and Engineering, 10(1). https://doi.org/10.22399/ijcesen.293 DOI: https://doi.org/10.22399/ijcesen.293
Amal V. PURUSHOTHAMAN, S. MUTHUKUMARAN, & Deepesh VIMALAN. (2024). Investigation of heat generation calculations in numerical modelling of friction stir welding. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.558 DOI: https://doi.org/10.22399/ijcesen.558
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.