Depression Sentiment Analysis using Machine Learning Techniques:A Review

Authors

  • Ashwani Kumar Guru Jambheshwar University of Science and Technology, Hisar, Haryana
  • Sunita Beniwal Guru jambheshwar university of science and technology, hisar

DOI:

https://doi.org/10.22399/ijcesen.851

Keywords:

Depression, Social Media, Twitter Blogs, Feature Extraction, Deep Learning, Machine Learning Techniques

Abstract

Depression is one of the habitual psychological well-being diseases and a significant number of depressed individuals end their lives. People suffering from depression don’t ask for help from psychological doctors due to hesitation or unawareness about depression that causes a delay in diagnosis and treatment. A lot of people share their opinions and emotions on social networking sites. Several studies of social networking site posts related to depression rely upon Facebook, Twitter, Blogs, and other social networks because they help in recording behavioral attributes which are related to a person’s thinking, socialization, communication, etc. Datasets from various social networking sites are useful for depression sentiment analysis. Various machine learning and deep learning techniques like Naïve Bayes, maximum entropy, Support Vector Machine (SVM), and Decision Tree classifiers neural networks, deep neural networks, recurrent neural networks etc. have been used for depression detection. This paper presents a review on sentiment analysis performed on social media platforms for detection of depression The datasets utilized are also discussed. A comparative analysis of existing work in the area of depression detection is provided to get a clear understanding of the techniques used. Finally, challenges and future work which can be done in the field of depression detection is also discussed

References

Tong L., Zang Q., Sadka A, Li L., & Zhou H. (2019). Inverse boosting pruning trees for depression detection on Twitter. arXiv preprint. https://doi.org/10.48550/arXiv.1906.00398.

Andrade L., Caraveo‐Anduaga J. J., Berglund P., Bijl R. V., Graaf R. D., Vollebergh W. & Wittchen H. U. (2003). The epidemiology of major depressive episodes: results from the International Consortium of Psychiatric Epidemiology (ICPE) Surveys. International journal of methods in psychiatric research. 12(1);3-21. https://doi.org/10.1002/mpr.138.

Peng Z., Hu Q. & Dang J. (2019). Multi-kernel SVM based depression recognition using social media data. International Journal of Machine Learning and Cybernetics. 10(1);43-57. https://doi.org/10.1007/s13042-017-0697-1.

Ledford H. (2014). Medical research: if depression were cancer. Nature News. 515(7526), 182. https://doi.org/10.1038/515182a.

Smith K. (2014). Mental health: a world of depression. Nature News. 515(7526);180-181. https://doi.org/10.1038/515180a.

Hassan, A. U., Hussain, J., Hussain, M., Sadiq, M., & Lee, S. (2017). Sentiment analysis of social networking sites (SNS) data using machine learning approach for the measurement of depression. 2017 International Conference on Information and Communication Technology Convergence (ICTC). 138–140. https://doi.org/10.1109/ictc.2017.8190959.

Trotzek, M., Koitka, S., & Friedrich, C. M. (2020). Utilizing Neural Networks and Linguistic Metadata for Early Detection of Depression Indications in Text Sequences. IEEE Transactions on Knowledge and Data Engineering. 32(3);588–601. https://doi.org/10.1109/tkde.2018.2885515.

[8] Gowen K., Deschaine M., Gruttadara D. & Markey D. (2012). Young adults with mental health conditions and social networking websites: Seeking tools to build community. Psychiatric Rehabilitation Journal. 35(3);245. https://doi.org/10.2975/35.3.2012.245.250.

Naslund J. A., Grande S. W., Aschbrenner K. A. & Elwyn G. (2014). Naturally occurring peer support through social media: the experiences of individuals with severe mental illness using YouTube. PLOS one. 9(10). https://doi.org/10.1371/journal.pone.0110171.

Abhyankar A. (2011). Social networking sites. SAMVAD. 2,;18-21.

Braithwaite S.R., Giraud-Carrier C., West J., Barnes M. D. & Hanson C.L. (2016). Validating machine learning algorithms for Twitter data against established measures of suicidality. JMIR mental health. 3(2) , e21. https://doi.org/10.2196/mental.4822.

Hussain J., Ali M., Bilal H.S.M., Afzal M., Ahmad H.F., Banos O., & Lee S. (2015). SNS based predictive model for depression. In International Conference on Smart Homes and Health Telematics. 349-354. https://doi.org/10.1007/978-3-319-19312-0_34.

Naslund J.A., Bondre A., Torous J., & Aschbrenner K.A. (2020). Social media and mental health: Benefits, risks, and opportunities for research and practice. Journal of technology in behavioral science. 5(3);245-257. https://doi.org/10.1007/s41347-020-00134-x

Ahmed Y.A., Ahmad M.N., Ahmad N., & Zakaria N. H. (2019). Social media for knowledge-sharing: A systematic literature review. Telematics and informatics. 37;72-112. https://doi.org/10.1016/j.tele.2018.01.015.

Chen, Y., Zhou, B., Zhang, W., Gong, W., & Sun, G. (2018). Sentiment Analysis Based on Deep Learning and Its Application in Screening for Perinatal Depression. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). 451–456. https://doi.org/10.1109/dsc.2018.00073.

Edition F. (2013). Diagnostic and statistical manual of mental disorders. Am Psychiatric Assoc, 21.

Yao H., Ye R., Jing W. & Ting W. (2016). Clinical analyses of risk factors in perinatal pregnant women with depression, JClinPsychosom, 28-31.

Ruess J., Parise F., Milias-Argeitis A., Khammash M. & Lygeros J. (2015). Iterative experiment design guides the characterization of a light-inducible gene expression circuit. Proceedings of the National Academy of Sciences. 112(26);8148-8153. https://doi.org/10.1073/pnas.1423947112.

Duggan M. & Smith A. (2013). Social media update. Pew Internet and American Life Project. http://pewinternet.org/Reports/2013/Social-MediaUpdate.aspx, 2013.

Brenner J. (2013). Pew internet: social networking. Pew Internet and American Life Project. http://www.pewinternet.org/factsheets/socialnetworking-fact-sheet/, 2013.

Edwards J.(2013). Facebook is no longer the most popular social network for teens. Business Insider. http://www.businessinsider.com/ facebook-and-teen-user-trends-2013.

Duggan M. (2015). Social media update 2014. Pew Research Centre. http://www.pewinternet.org/2015/01/09/social-media-update-2014.

Marwick, A. E., & boyd, danah. (2010). I tweet honestly, I tweet passionately: Twitter users, context collapse, and the imagined audience. New Media & Society. 13(1);114–133. https://doi.org/10.1177/1461444810365313.

Shapero B.G., Black S.K., Liu R.T., Klugman J., Bender R.E., Abramson L.Y. & Alloy L.B. (2014). Stressful life events and depression symptoms: The effect of childhood emotional abuse on stress reactivity. Journal of Clinical Psychology. 70;209-223. https://doi.org/10.1002/jclp.22011.

Zlotnick C., Kohn R., Keitner G. & Della Grotta S.A. (2000). The relationship between quality of interpersonal relationships and major depressive disorder: Findings from the national comorbidity survey. Journal of Affective Disorders. 59(3);205–215. https://doi.org/10.1016/s0165-0327(99)00153-6.

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5) American psychiatric pub.

Tekell J.L., Hoffmann R., Hendrickse W., Greene R.W., Rush A.J. & Armitage R. (2005). High frequency EEG activity during sleep: Characteristics in schizophrenia and depression. Clinical EEG and Neuroscience. 36(1);25–35. https://doi.org/10.1177/155005940503600107.

Low L.S.A., Maddage N.C., Lech M., Sheeber L. & Allen N. (2010). Influence of acoustic low-level descriptors in the detection of clinical depression in adolescents. In: Proceedings of IEEE international conference on acoustics, speech and signal processing. 5154–5157. https://doi.org/10.1109/icassp.2010.5495018.

Cohn J.F., Kruez T.S., Matthews I., Yang Y., Nguyen M.H., Padilla M.T., Zhou F. & De la Torre F. (2009). Detecting depression from facial actions and vocal prosody. In: Proceedings of IEEE international conference on affective computing and intelligent interaction and workshops. 1–7. https://doi.org/10.1109/acii.2009.5349358.

Tong L., Zhang Q., Sadka A., Li L. & Zhou H. (2019). Inverse boosting pruning trees for depression detection on Twitter. arXiv preprint. https://doi.org/10.48550/arXiv.1906.00398.

Bilal, U., & Khan, F. H. (2020). An Analysis of Depression Detection Techniques from Online Social Networks. Intelligent Technologies and Applications. 296–308. https://doi.org/10.1007/978-981-15-5232-8_26.

Mustafa, R. U., Ashraf, N., Ahmed, F. S., Ferzund, J., Shahzad, B., & Gelbukh, A. (2020). A Multiclass Depression Detection in Social Media Based on Sentiment Analysis. 17th International Conference on Information Technology–New Generations (ITNG 2020). 659–662. https://doi.org/10.1007/978-3-030-43020-7_89.

Verma, B., Gupta, S., & Goel, L. (2020). A Neural Network Based Hybrid Model for Depression Detection in Twitter. Advances in Computing and Data Sciences. 164–175. https://doi.org/10.1007/978-981-15-6634-9_16 .

Tadesse, M. M., Lin, H., Xu, B., & Yang, L. (2019). Detection of Depression-Related Posts in Reddit Social Media Forum. IEEE Access. 7;44883–44893. https://doi.org/10.1109/access.2019.2909180.

Pampouchidou, A., Simos, P. G., Marias, K., Meriaudeau, F., Yang, F., Pediaditis, M., & Tsiknakis, M. (2019). Automatic Assessment of Depression Based on Visual Cues: A Systematic Review. IEEE Transactions on Affective Computing. 10(4);445–470. https://doi.org/10.1109/taffc.2017.2724035.

Rao, G., Zhang, Y., Zhang, L., Cong, Q., & Feng, Z. (2020). MGL-CNN: A Hierarchical Posts Representations Model for Identifying Depressed Individuals in Online Forums. IEEE Access. 8; 32395–32403. https://doi.org/10.1109/access.2020.2973737.

Islam M.R., Kabir M.A., Ahmed A., Kamal A.R.M., Wang H. & Ulhaq A. (2018). Depression detection from social network data using machine learning techniques. Health Information Science Systems. 6(1);1-12. https://doi.org/10.1007/s13755-018-0046-0.

Deshpande, M., & Rao, V. (2017). Depression detection using emotion artificial intelligence. 2017 International Conference on Intelligent Sustainable Systems (ICISS). 858-862. https://doi.org/10.1109/iss1.2017.8389299.

Trotzek M., Koitka S. & Friedrich C.M. (2018). Utilizing neural networks and linguistic metadata for early detection of depression indications in text sequences. IEEE Trans. on Knowledge and Data Engineering. 32(3);588-601. https://doi.org/10.1109/tkde.2018.2885515.

Chen Y., Zhou B., Zhang W., Gong W. & Sun G. (2018). Sentiment analysis based on deep learning and its application in screening for perinatal depression. In: Proceedings IEEE 3rd International Conference on Data Science in Cyberspace. 451-456. https://doi.org/10.1109/dsc.2018.00073.

Stephen J.J. & Prabu P. (2019). Detecting the magnitude of depression in Twitter users using sentiment analysis. In: Proceedings IEEE international journal of electrical and computer engineering. 9(4);3247-3255. https://doi.org/10.11591/ijece.v9i4.pp3247-3255.

Almouzini S. & Alageel A. (2019). Detecting Arabic depressed users from Twitter data. Procedia Computer Science. 163;257–265. https://doi.org/10.1016/j.procs.2019.12.107.

Kumar A., Sharma A. & Arora A. (2019). Anxious depression prediction in real-time social data. In International Conference on Advances in Engineering Science Management & Technology (ICAESMT)-2019. https://doi.org/10.2139/ssrn.3383359.

Shrestha K. (2018). Machine Learning for Depression Diagnosis using Twitter data. International Journal of Computer Engineering in Research Trends. 2(5), 56-61.

Bhargava S. & Choudhary S. (2018). Behavioral Analysis of Depressed Sentimental Over Twitter: Based on Supervised Machine Learning Approach. In: Proceedings of 3rd International Conference on Internet of Things and Connected Technologies. 26-27. https://doi.org/10.2139/ssrn.3175816.

Orabi A.H., Buddhitha P., Orabi M.H. & Inkpen D. (2018). Deep learning for depression detection of twitter users. In: Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic. 88-97. https://doi.org/10.18653/v1/w18-0609.

Zogan H., Razzak I., Wang X., Jameel S. & Xu G. (2022). Explainable depression detection with multi-aspect features using a hybrid deep learning model on social media. World Wide Web. 25(1);281-304. https://doi.org/10.1007/s11280-021-00992-2.

Tirtopangarsa A.P. & Maharani W. (2021). Sentiment Analysis of Depression Detection on Twitter Social Media Users Using the K-Nearest Neighbor Method. In Seminar Nasional Informatika (SEMNASIF). 1(1);247-258.

Loh, H.W., Ooi C.P., Aydemir E., Tuncer T., Dogan S. & Acharya U.R. (2021). Decision support system for major depression detection using spectrogram and convolution neural network with EEG signals. Expert Systems. 39(3). https://doi.org/10.1111/exsy.12773.

Akbari H., Sadiq M.T. & Rehman A.U. (2021). Classification of normal and depressed EEG signals based on centered correntropy of rhythms in empirical wavelet transform domain. Health Information Science and Systems. 9(1);1-15. https://doi.org/10.1007/s13755-021-00139-7.

Ferraro G., Loo Gee B., Ji S. & Salvador-Carulla L. (2020). Lightme: analysing language in internet support groups for mental health. Health Information Science and Systems. 8(1);1-10. https://doi.org/10.1007/s13755-020-00115-7.

Amanat A., Rizwan M., Javed A.R., Abdelhaq M., Alsaqour R., Pandya S. & Uddin M. (2022). Deep learning for depression detection from textual data. Electronics. 11(5);676. https://doi.org/10.3390/electronics11050676.

Mostafa A.M., Aljasir M., Alruily M., Alsayat A. & Ezz M. (2023). Innovative Forward fusion feature selection algorithm for sentiment analysis using supervised classification. Applied Sciences. 13(4);2074. https://doi.org/10.3390/app13042074.

Obagbuwa I.C., Danster S. & Chibaya O.C. (2023). Supervised machine learning models for depression sentiment analysis. Frontiers in Artificial Intelligence. 6;1230649. https://doi.org/10.3389/frai.2023.1230649.

K. Tamilselvan, , M. N. S., A. Saranya, D. Abdul Jaleel, Er. Tatiraju V. Rajani Kanth, & S.D. Govardhan. (2025). Optimizing data processing in big data systems using hybrid machine learning techniques. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.936

Anakal, S., K. Krishna Prasad, Chandrashekhar Uppin, & M. Dileep Kumar. (2025). Diagnosis, visualisation and analysis of COVID-19 using Machine learning. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.826

Wang, S., & Koning, S. bin I. (2025). Social and Cognitive Predictors of Collaborative Learning in Music Ensembles. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.806

S. Leelavathy, S. Balakrishnan, M. Manikandan, J. Palanimeera, K. Mohana Prabha, & R. Vidhya. (2024). Deep Learning Algorithm Design for Discovery and Dysfunction of Landmines. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.686

Downloads

Published

2025-02-20

How to Cite

Kumar, A., & Beniwal, S. (2025). Depression Sentiment Analysis using Machine Learning Techniques:A Review. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.851

Issue

Section

Review Article