A Graph-Based and Pattern Classification Approach for Kannada Handwritten Text Recognition Under Struck-Out Conditions

Authors

  • H. K. Bhargav
  • Ambresh Bhadrashetty
  • K. Neelashetty
  • V. B. Murali Krishna National Institute of Technology Andhra Pradesh
  • G. Manohar Bali

DOI:

https://doi.org/10.22399/ijcesen.1021

Keywords:

Crossed-out text, Kannada language, Optical character recognition (OCR), Machine Learning

Abstract

This research focuses on the processing and identification of handwritten Kannada text, particularly under struck-out conditions. The database considered in this study comprises handwritten data. When such a database is processed using optical character recognition (OCR)-based digital systems, the output may often be in an unrecognizable format. To address this issue, a model has been developed incorporating pattern classification and a graph-based method for text identification. For pattern classification, feature extraction is performed using two different classes with a support vector machines (SVMs) classifier. In the graph-based approach, struck-out strokes are analyzed using the shortest path algorithm. To handle zigzag or wavy struck-out Kannada text, all possible paths of the strike-out strokes are identified, and suitable features are extracted for further processing. The synthesized/recovered text is processed using an inpainting cleaning method to ensure text recovery. The proposed methodology has been tested on both trained and untrained datasets of Kannada script. Performance evaluation was conducted using three parameters: precision, F1 score, and accuracy.

References

Namboodiri, A. M., & Jain, A. K. (2004). Online handwritten script recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(1), 124-130. DOI: 10.1109/TPAMI.2004.1261096

Ghosh, D., Dube, T., & Shivaprasad, A. (2010). Script recognition—a review. IEEE Transactions on pattern analysis and machine intelligence, 32(12), 2142-2161. DOI: 10.1109/TPAMI.2010.30

Pal, U., & Chaudhuri, B. B. (2004). Indian script character recognition: a survey. pattern Recognition, 37(9), 1887-1899. DOI: https://doi.org/10.1016/j.patcog.2004.02.003

Kim, I. J., & Kim, J. H. (2003). Statistical character structure modeling and its application to handwritten Chinese character recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(11), 1422-1436. DOI: 10.1109/TPAMI.2003.1240117

Hanmandlu, M., Agrawal, P., & Lall, B. (2009). Segmentation of handwritten Hindi text: A structural approach. International Journal of Computer Processing of Languages, 22(01), 1-20. DOI: https://doi.org/10.1142/S1793840609001993

Voigtlaender, P., Doetsch, P., & Ney, H. (2016, October). Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. In 2016 15th international conference on frontiers in handwriting recognition (ICFHR) (pp. 228-233). IEEE. DOI: 10.1109/ICFHR.2016.0052

Adak, C., Chaudhuri, B. B., & Blumenstein, M. (2017, May). Impact of struck-out text on writer identification. In 2017 international joint conference on neural networks (IJCNN) (pp. 1465-1471). IEEE. DOI: 10.1109/IJCNN.2017.7966025

Adak, C., & Chaudhuri, B. B. (2014, September). An approach of strike-through text identification from handwritten documents. In 2014 14th International Conference on Frontiers in Handwriting Recognition (pp. 643-648). IEEE. DOI: 10.1109/ICFHR.2014.113

Shi, B., Bai, X., & Yao, C. (2016). An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE transactions on pattern analysis and machine intelligence, 39(11), 2298-2304. DOI: 10.1109/TPAMI.2016.2646371

Marti, U. V., & Bunke, H. (2002). The IAM-database: an English sentence database for offline handwriting recognition. International journal on document analysis and recognition, 5, 39-46. DOI: https://doi.org/10.1007/s100320200071

Hegde, S., KK, A., & Shetty, S. (2012, August). Isolated word recognition for Kannada language using support vector machine. In International conference on information processing (pp. 262-269). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-642-31686-9_31

Ramesh, G., Kumar, S., & Champa, H. N. (2020, June). Recognition of Kannada handwritten words using SVM classifier with convolutional neural network. In 2020 IEEE Region 10 Symposium (TENSYMP) (pp. 1114-1117). IEEE. DOI: 10.1109/TENSYMP50017.2020.9231003.

Likforman-Sulem, L., & Vinciarelli, A. (2008). Hmm-based offline recognition of handwritten words crossed out with different kinds of strokes.

Brink, A., van der Klauw, H., & Schomaker, L. (2008, January). Automatic removal of crossed-out handwritten text and the effect on writer verification and identification. In Document Recognition and Retrieval XV (Vol. 6815, pp. 79-88). SPIE. DOI: https://doi.org/10.1117/12.766466

Chaudhuri, B. B., & Adak, C. (2017). An approach for detecting and cleaning of struck-out handwritten text. Pattern Recognition, 61, 282-294. DOI: https://doi.org/10.1016/j.patcog.2016.07.032

Manmatha, R., & Srimal, N. (1999, September). Scale space technique for word segmentation in handwritten documents. In International conference on scale-space theories in computer vision (pp. 22-33). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/3-540-48236-9_3

Elizondo-Leal, J. C., & Ramirez-Torres, G. (2010, September). An exact euclidean distance transform for universal path planning. In 2010 IEEE Electronics, Robotics and Automotive Mechanics Conference (pp. 62-67). IEEE. DOI: 10.1109/CERMA.2010.93

Jaramillo, J. C. A., Murillo-Fuentes, J. J., & Olmos, P. M. (2018, August). Boosting handwriting text recognition in small databases with transfer learning. In 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) (pp. 429-434). IEEE. DOI: 10.1109/ICFHR-2018.2018.00081

Graves, A., Fernández, S., Gomez, F., & Schmidhuber, J. (2006, June). Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In Proceedings of the 23rd international conference on Machine learning (pp. 369-376). DOI: https://doi.org/10.1145/1143844.1143891

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals. Proceedings of the Soviet physics doklady.

Plamondon, R., & Lorette, G. (1989). Automatic signature verification and writer identification—the state of the art. Pattern recognition, 22(2), 107-131. DOI: https://doi.org/10.1016/0031-3203(89)90059-9

Schomaker, L. (2007, September). Advances in writer identification and verification. In Ninth International Conference on Document Analysis and Recognition (ICDAR 2007) (Vol. 2, pp. 1268-1273). IEEE. DOI: 10.1109/ICDAR.2007.4377119

He, Z., You, X., & Tang, Y. Y. (2008). Writer identification of Chinese handwriting documents using hidden Markov tree model. Pattern Recognition, 41(4), 1295-1307. DOI: https://doi.org/10.1016/j.patcog.2007.08.017

Adak, C., & Chaudhuri, B. B. (2015, August). Writer identification from offline isolated Bangla characters and numerals. In 2015 13th International Conference on Document Analysis and Recognition (ICDAR) (pp. 486-490). IEEE. DOI: 10.1109/ICDAR.2015.7333809

Daniels, Z. A., & Baird, H. S. (2013, August). Discriminating features for writer identification. In 2013 12th International Conference on Document Analysis and Recognition (pp. 1385-1389). IEEE. DOI: 10.1109/ICDAR.2013.280

Tomai, C. I., Zhang, B., & Srihari, S. N. (2004, August). Discriminatory power of handwritten words for writer recognition. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. (Vol. 2, pp. 638-641). IEEE. DOI: 10.1109/ICPR.2004.1334329

Zhang, B., Srihari, S. N., & Lee, S. (2003, August). Individuality of handwritten characters. In Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings. (Vol. 3, pp. 1086-1086). IEEE Computer Society. DOI: 10.1109/ICDAR.2003.1227824

Dintakurthy, Y., Innmuri, R. K. ., Vanteru , A. ., & Thotakuri, A. (2025). Emerging Applications of Artificial Intelligence in Edge Computing: A Comprehensive Review. Journal of Modern Technology, 1(2), 175-185.

Schomaker, L., & Bulacu, M. (2004). Automatic writer identification using connected-component contours and edge-based features of uppercase western script. IEEE transactions on pattern analysis and machine intelligence, 26(6), 787-798. DOI: 10.1109/TPAMI.2004.18

Jain, R., & Doermann, D. (2013, August). Writer identification using an alphabet of contour gradient descriptors. In 2013 12th International Conference on Document Analysis and Recognition (pp. 550-554). IEEE. DOI: 10.1109/ICDAR.2013.115

P. Rathika, S. Yamunadevi, P. Ponni, V. Parthipan, & P. Anju. (2024). Developing an AI-Powered Interactive Virtual Tutor for Enhanced Learning Experiences. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.782

K. Tamilselvan, , M. N. S., A. Saranya, D. Abdul Jaleel, Er. Tatiraju V. Rajani Kanth, & S.D. Govardhan. (2025). Optimizing data processing in big data systems using hybrid machine learning techniques. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.936

Wang, S., & Koning, S. bin I. (2025). Social and Cognitive Predictors of Collaborative Learning in Music Ensembles. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.806

S. Esakkiammal, & K. Kasturi. (2024). Advancing Educational Outcomes with Artificial Intelligence: Challenges, Opportunities, And Future Directions. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.799

Bertolini, D., Oliveira, L. S., Justino, E., & Sabourin, R. (2013). Texture-based descriptors for writer identification and verification. Expert Systems with Applications, 40(6), 2069-2080. DOI: https://doi.org/10.1016/j.eswa.2012.10.016

Ajith, S. (2024). A comprehensive review of online and offline handwritten kannada character recognition (pp. 77–83). https://doi.org/10.58532/v3bkai11p4ch1

Tiptur Parashivamurthy, S. P., & Rajashekararadhya, S. V. (2024). Intelligent Character Recognition Framework for Kannada Scripts via Long Short Term Memory with Thresholding-based Segmentation. Advances in Artificial Intelligence and Machine Learning, 04(03), 2517–2534. https://doi.org/10.54364/aaiml.2024.43147

Downloads

Published

2025-03-04

How to Cite

H. K. Bhargav, Ambresh Bhadrashetty, K. Neelashetty, V. B. Murali Krishna, & G. Manohar Bali. (2025). A Graph-Based and Pattern Classification Approach for Kannada Handwritten Text Recognition Under Struck-Out Conditions. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1021

Issue

Section

Research Article