A Power-Efficient Optical Modem for Reliable, Long-Distance Communication Using GFDM Technology in Underwater and Terrestrial Wireless Systems

Authors

DOI:

https://doi.org/10.22399/ijcesen.1034

Keywords:

Underwater wireless communication, Optical signal, Reliable, Long-distance, Power efficiency

Abstract

This paper presents the design of a GFDM-based optical communication modem using MATLAB SIMULINK to improve the power efficiency, reliability and long distance communication in underwater wireless communication (UWC) systems. Conventional techniques such as orthogonal frequency division multiplexing (OFDM) and single-carrier frequency division multiple access (SC-FDMA) are commonly utilized to enhance data rates, reduce BER, and mitigate the impact of multipath fading. However, these methods come with certain limitations. OFDM, for instance, suffers from a high peak-to-average power ratio (PAPR) and significant out-of-band emissions, whereas SC-FDMA is highly susceptible to inter-symbol interference (ISI) in multipath environments. Generalized frequency division multiplexing (GFDM) provides a better flexibility for reducing the PAPR and improve the robustness against Doppler effects of a critical factor in UWC by using non-orthogonal subcarriers. By using MATLAB SIMULINK, the optical communication modem was developed for long distance signal transmission and reception. This approach enhances channel bandwidth utilization and spatial diversity, making it a more effective solution for underwater wireless communication. As a result, GFDM emerges as a promising alternative to conventional techniques, offering improved modem performance by reducing bit error rate (BER), increasing spectral efficiency, and demonstrating greater resilience to variations in underwater channel conditions.

References

. Adhikari, P., Puri, S., & Kumar, V. (2015). Performance analysis of SC-FDMA and OFDMA for underwater wireless communication. International Journal of Computer Applications, 116(21), 1-5. https://doi.org/10.5120/20277-2140

. Alavi, A., Wang, J., & Yang, Y. (2020). Generalized frequency division multiplexing for underwater wireless communication. Journal of Marine Science and Engineering, 8(5), 345. https://doi.org/10.3390/jmse8050345 DOI: https://doi.org/10.3390/jmse8050345

. Alharbi, A., Ali, A., & Haque, A. (2021). MATLAB simulation of GFDM-based underwater wireless communication system. Journal of Electrical Engineering and Automation, 3(1), 30-37. https://doi.org/10.2139/ssrn.3796042

. Ch, P., & Sreenivasulu, G. (2023). A hybrid optical-acoustic modem based on MIMO-OFDM for reliable data transmission in green underwater wireless communication. Journal of VLSI Circuits and Systems, 6(1), 36–42. https://doi.org/10.31838/jvcs/06.01.06 DOI: https://doi.org/10.31838/jvcs/06.01.06

. Ch, P., & Sreenivasulu, G. (2021). A high-speed underwater wireless communication through a novel hybrid opto-acoustic modem using MIMO-OFDM. Instrumentation Mesure Metrologies, 20(5), 279-287. https://doi.org/10.18280/i2m.200505 DOI: https://doi.org/10.18280/i2m.200505

. Ch, P., & Sreenivasulu, G. (2023). A highly compatible optical/acoustic modem based on MIMO-OFDM for underwater wireless communication using FPGA. International Journal of Electrical and Electronics Research, 11(4), 993-1000. https://doi.org/10.37391/ijeer.110417 DOI: https://doi.org/10.37391/ijeer.110417

. Ch, P., & Sreenivasulu, G. (2023). Performance of a MIMO-OFDM-based opto-acoustic modem for high data rate underwater wireless communication (UWC) system. In V. Chakravarthy et al. (Eds.), Advances in Signal Processing, Embedded Systems and IoT. Springer. https://doi.org/10.1007/978-981-19-8865-3_5 DOI: https://doi.org/10.1007/978-981-19-8865-3_5

. Ch, P., & Sreenivasulu, G. (2020). A review on underwater acoustic/optical modems: Design issues, recent developments, and challenges in underwater communication. i-manager’s Journal on Communication Engineering and Systems, 9(2), 21-40. https://doi.org/10.26634/jcs.9.2.18042 DOI: https://doi.org/10.26634/jcs.9.2.18042

. Cochenour, M., Mullen, L. J., & Laux, A. E. (2008). Characterization of the beam-spread function for underwater wireless optical communications links. IEEE Journal of Ocean Engineering, 33(4), 513-521. DOI: https://doi.org/10.1109/JOE.2008.2005341

. Doniec, M., Angermann, M., & Rus, D. (2013). An end-to-end signal strength model for underwater optical communications. IEEE Journal of Ocean Engineering, 38(4), 743-757. DOI: https://doi.org/10.1109/JOE.2013.2278932

. Ghassemlooy, Z., & Popoola, W. O. (2010). Terrestrial free-space optical communications (Ch. 17, pp. 356-392). InTech.

. Han, C., Zhang, L., Shu, N., Sun, Q., & Li, Q. (2013). A survey on deployment algorithms in underwater acoustic sensor networks. International Journal of Distant Sensor Network, 9(12), 3140-3149. DOI: https://doi.org/10.1155/2013/314049

. Johnson, J., Jasman, F., Green, R. J., & Leeson, M. S. (2014). Recent advances in underwater optical wireless communications. Underwater Technology, 32(3), 167-175. DOI: https://doi.org/10.3723/ut.32.167

. Khalighi, M. A., & Uysal, M. (2014). Survey on free space optical communication: A communication theory perspective. IEEE Communication Surveys, 16(4), 2231-2258. DOI: https://doi.org/10.1109/COMST.2014.2329501

. Liu, Y., Wang, L., & Zhang, Y. (2013). Performance analysis of OFDM in underwater acoustic communications. IEEE Transactions on Wireless Communications, 12(7), 3624-3633. https://doi.org/10.1109/TWC.2013.062713.130014

. Marinho, L., Teixeira, D., & Gomes, M. (2019). Generalized frequency division multiplexing: A new approach for underwater wireless communications. Sensors, 19(20), 4591. https://doi.org/10.3390/s19204591 DOI: https://doi.org/10.3390/s19010160

. Nasir, S., Celik, A., Al-Naffouri, T., & Alouini, M.-S. (2018). Underwater optical wireless communications, networking, and localization: A survey. Sensors, 18(1), 1-16.

. Shi, J., Zhang, S., & Yang, C. J. (2012). High frequency RF-based non-contact underwater communication. In Proceedings of IEEE OCEANS, pp. 1-6. DOI: https://doi.org/10.1109/OCEANS-Yeosu.2012.6263403

. Urick, R. J. (1983). Principles of underwater sound. McGraw-Hill.

. Zhang, H., & Dong, Y. (2015). Link misalignment for underwater wireless optical communications. In Proceedings of IEEE DOI: https://doi.org/10.1109/RTUWO.2015.7365755

. R.T. Subhalakshmi, S. Geetha, S. Dhanabal, & M. Balakrishnan. (2025). ALPOA: Adaptive Learning Path Optimization Algorithm for Personalized E-Learning Experiences. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.910 DOI: https://doi.org/10.22399/ijcesen.910

. R. Logesh Babu, K. Tamilselvan, N. Purandhar, Tatiraju V. Rajani Kanth, R. Prathipa, & Ponmurugan Panneer Selvam. (2025). Adaptive Computational Intelligence Algorithms for Efficient Resource Management in Smart Systems. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.836 DOI: https://doi.org/10.22399/ijcesen.836

. Mansi Joshi, & S. Murali. (2025). An Efficient Smart Flood Detection and Alert System based on Automatic Water Level Recorder Approach using IoT. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.717 DOI: https://doi.org/10.22399/ijcesen.717

. M. Devika, & S. Maflin Shaby. (2024). Optimizing Wireless Sensor Networks: A Deep Reinforcement Learning-Assisted Butterfly Optimization Algorithm in MOD-LEACH Routing for Enhanced Energy Efficiency. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.708 DOI: https://doi.org/10.22399/ijcesen.708

. Sunandha Rajagopal, & N. Thangarasu. (2024). The Impact of Clinical Parameters on LSTM-based Blood Glucose Estimate in Type 1 Diabetes. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.656 DOI: https://doi.org/10.22399/ijcesen.656

. Şen Baykal, D., ALMISNED , G., ALKARRANI , H., & TEKIN, H. O. (2024). Exploring gamma-ray and neutron attenuation properties of some high-density alloy samples through MCNP Monte Carlo code. International Journal of Computational and Experimental Science and Engineering, 10(3). https://doi.org/10.22399/ijcesen.422 DOI: https://doi.org/10.22399/ijcesen.422

. Kabashi, G., Kola, L., Kabashi, S., & Ajredini, F. (2024). Assessment of climate change mitigation potential of the Kosovo energy and transport sector. International Journal of Computational and Experimental Science and Engineering, 10(3). https://doi.org/10.22399/ijcesen.325 DOI: https://doi.org/10.22399/ijcesen.325

Downloads

Published

2025-02-10

How to Cite

Tejovathi VENATI, & Swarnalatha SUGALI. (2025). A Power-Efficient Optical Modem for Reliable, Long-Distance Communication Using GFDM Technology in Underwater and Terrestrial Wireless Systems. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1034

Issue

Section

Research Article