Brain Tumor Segmentation and Detection Utilizing Deep Learning Convolutional Neural Networks
Enhanced Medical Image for Precise Tumor Localization and Classification
DOI:
https://doi.org/10.22399/ijcesen.1051Keywords:
brain tumor, MRI image segmentation, deep learning, accuracy, Convolutional Neural Networks (CNN)Abstract
Brain tumor division presents a principal challenge in neuro-oncology, essentially affecting determination, treatment arranging, and persistent results. Machine learning strategies, counting directed, unsupervised, and profound learning approaches, have revolutionized neuroimaging investigation by robotizing and upgrading the division of brain tumors over imaging modalities like MRI and CT. Profound learning, especially convolutional Neural Systems (CNNs), empowers exact outline of tumor boundaries, distinguishing proof of districts of intrigued, and extraction of neurotic highlights, tending to restrictions of conventional manual strategies. In spite of significant progressions, challenges stay in optimizing algorithmic execution, guaranteeing clinical significance, and tending to moral contemplations. The integration of strong calculations into clinical workflows requires intrigue collaborations to improve adequacy and reliability. Future inquire about bearings emphasize creating progressed models, leveraging data-driven approaches, joining frameworks into clinical hone, keeping up moral compliance, cultivating collaborative advancement environments, and locks in partners. This consider highlights the transformative affect of CNN-based profound learning strategies on progressing demonstrative precision, progressing treatment results, cultivating healthcare development, and supporting personalized pharmaceutical approaches around the world.
References
B Jeel Alpeshkumar Doshi et al. (2021). Brain Tumor Detection and Segmentation. Gradiva 7(5):210-215
Hajar Cherguif, Jamal Riffi, Mohamed Adnane Mahrez, Ali Yahaouy and Hamid Tairi, (2019). Brain Tumor Segmentation Based on Deep Learning,” in International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS), IEEE.
Chirodip Lodh Choudhary, Chandrakanta Mahanty, Raghvendra Kumar,and Borjo Kishore Mishra, (2020). Brain Tumor Detection and Classification using Convolutional Neural Network and Deep Neural Network, in International Conference on Computer Science, Engineering and Applications (ICCSEA).
Z. Jia and D. Chen, Brain Tumor Identification and Classification of MRI images using deep learning techniques, in IEEE Access, doi: 10.1109/ACCESS.2020.3016319.
AlexNet-NDTL: Classification of MRI brain tumor images using modified AlexNet with deep transfer learning and Lipschitz-based data augmentation March 2023 International Journal of Imaging Systems and Technology 33(4). DOI: 10.1002/ima.22870
Akmalbek Bobomirzaevich Abdusalomov, Mukhriddin Mukhiddinov, Taeg Keun Whangbo Editor: Hirotaka Hasegawa. (2023). Brain Tumor Detection Based on Deep Learning Approaches and Magnetic Resonance Imaging Cancers (Basel). 2023 Aug 18;15(16):4172. doi: 10.3390/cancers15164172
Çağlan, A., & Dirican, B. (2024). Evaluation of Dosimetric and Radiobiological Parameters for Different TPS Dose Calculation Algorithms and Plans for Lung Cancer Radiotherapy. International Journal of Computational and Experimental Science and Engineering, 10(2). https://doi.org/10.22399/ijcesen.335
A. K. Budati and R. B. Katta, (2022). ‘An automated brain tumor detection and classification from MRI images using machine learning techniques with IoT, Environ., Develop. Sustainability, 24(9);10570–10584.
Z. Yao, Z. Zhang, and L.-Q. Xu, (2016). Convolutional neural network for retinal blood vessel segmentation, in Proc. 9th Int. Symp. Comput. Intell. Design (ISCID), 1;406–409.
T. Armstrong, M. Cohen, J. Weinberg, and M. Gilbert, (2004). ‘Imaging techniques in neuro-oncology, Seminars Oncol. Nursing, 20(4);231–239
H. W. Kim, L. Van Assche, R. B. Jennings, W. B. Wince, C. J. Jensen,W. G. Rehwald, D. C. Wendell, L. Bhatti, D. M. Spatz, M. A. Parker,E. R. Jenista, I. Klem, A. L. C. Crowley, E.-L. Chen, R. M. Judd, and R. J. Kim, (2015). Relationship of T2-weighted MRI myocardial hyperintensity and the ischemic area-at-risk, Circulat. Res., 117(3);254–265.
W. Deng, Q. Shi, K. Luo, Y. Yang, and N. Ning, (2019). Brain tumor segmentation based on improved convolutional neural network in combination with non- quantifiable local texture feature, J. Med. Syst., 43(6);1–9.
K. R. Babu, P. V. Nagajaneyulu, and K. S. Prasad, (2021). Brain tumor seg- mentation of T1w MRI images based on clustering using dimensionality reduction random projection technique, Current Med. Imag. Formerly Current Med. Imag. Rev., 17(3);331–341.
N. D. Indira, K. R. Babu, M. A. Kumar, D. S. Kiran, and D. P. Sashank, (2020). Brain tumor detection from MRI images using optimization segmentation techniques, Int. J. Adv. Sci. Technol., 29(4);7858–7865.
M. Hssayeni, (2020). Computed tomography images for intracranial hemorrhage detection and segmentation, PhysioNet, doi: 10.13026/4nae-zg36.
K. K. G. R. Babu, K. K. M. Prasad, K. R. Krishna, M. G. Samhith, and P. J. Pushpitha, (2020). Effective detection of brain tumour on MRI images using optimization based segmentation techniques, Int. J. Sci. Technol. Res., 9(1);1182–1185.
E. F. Badran, E. G. Mahmoud, and N. Hamdy, (2010). An algorithm for detecting brain tumors in MRI images, in Proc. Int. Conf. Comput. Eng. Syst., pp. 368–373.
S. Shameem K. R. Babu, U. S. Deepthi, A. S. Madhuri, and P. S. Prasad, (2019). Comparative analysis of brain tumor detection using deep learning methods,Int. J. Sci. Technol. Res., 8(12);252–254.
J. Nodirov, A. B. Abdusalomov, and T. K. Whangbo, (2022). Attention 3D U-Net with multiple skip connections for segmentation of brain tumor images. Sensors, 22(17);6501.
.A. S. M. Shafi, M. B. Rahman, T. Anwar, R. S. Halder, and H. M. E. Kays, (2019). Classification of brain tumors and auto-immune disease using ensemble learning, Informat. Med. Unlocked, 8(12);252–254,2019.
J. Nodirov, A. B. Abdusalomov, and T. K. Whangbo, (2022). Attention 3D U-Net with multiple skip connections for segmentation of brain tumor images, Sensors, 22(17);6501.
A. S. M. Shafi, M. B. Rahman, T. Anwar, R. S. Halder, and H. M. E. Kays, (2021). Classification of brain tumors and auto-immune disease using ensemble learning, Informat. Med. Unlocked, 24; 100608.
Zhai, J., Li, H. (2019). An Improved Full Convolutional Network Combined with Conditional Random Fields for Brain MR Image Segmentation Algorithm and its 3D Visualization Analysis. J Med Syst 43;292 https://doi.org/10.1007/s10916-019-1424-0
ÖZNACAR, T., & ERGENE, N. (2024). A Machine Learning Approach to Early Detection and Malignancy Prediction in Breast Cancer. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.516
A. Lundervold and A. Lundervold, (2019). An overview of deep learning in medical imaging focusing on MRI, J. Med. Phys., 29(2);102–127.
Y. Jiang, J. Hou, X. Xiao, and H. Deng, (2018). A brain tumor segmentation new method based on statistical thresholding and multiscale CNN, in Proc. Int. Conf. Intell. Comput., pp. 235–245.
K. K. G. R. Babu, K. K. M. Prasad, K. R. Krishna, M. G. Samhith, and P. J. Pushpitha, (2020). Effective detection of brain tumour on MRI images using optimization based segmentation techniques, Int. J. Sci. Technol. Res., 9(1);1182–1185.
R. Ramya, J. Ghunaseelan, S. Kavitha, A. Roopasree, & Sameeullah Kajahussain. (2025). An effective method for the identification of multi-class tumors in brain magnetic resonance imaging. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.841
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.