Designing integrated intelligent control systems for photovoltaic cooling and dust panels based on IoT: Kirkuk study, Iraq
DOI:
https://doi.org/10.22399/ijcesen.1092Keywords:
PV cooling, IoT, efficiency, active cooling, Smart cooling system, Smart Dust systemAbstract
This study presents an innovative integrated control system to enhance photovoltaic (PV) efficiency in arid regions by addressing two critical challenges: temperature-induced performance degradation and dust accumulation. Focusing on Kirkuk, Iraq, the proposed system integrates two distinct intelligent subsystems powered by IoT technology: an activated water-based cooling mechanism and an activated water-driven dust removal system. Both subsystems employ real-time data from IoT sensors (temperature, humidity, dust density, irradiance) to autonomously optimize operations through a centralized cloud platform. The cooling subsystem utilizes activated water circulated through microchannel networks embedded in PV panels, dynamically triggered by AI algorithms to maintain optimal temperatures. Simultaneously, the dust removal subsystem employs pressurized activated water sprays, activated during the night periods to minimize energy loss, with computer vision algorithms identifying dust distribution patterns for targeted cleaning. This research highlights the synergy between IoT-driven automation, activated water technologies, and dual-control optimization, offering a scalable model for renewable energy systems in arid climates. The framework aligns with sustainable development goals by balancing energy efficiency, water conservation, and cost-effectiveness. Field experiments in Kirkuk demonstrated a 27% increase in energy output and a 40% reduction in maintenance downtime compared to conventional systems. The intelligent scheduling of activated water usage reduced overall water consumption by 30% while achieving 95% dust removal efficiency. Economic analysis confirmed a 22% reduction in operational costs due to adaptive resource management and prolonged PV lifespan.
References
Arutyunov, V. S., & Lisichkin, G. V. (2017). Energy resources of the 21st century: problems and forecasts. Can renewable energy sources replace fossil fuels? Russian Chemical Reviews, 86(8), 777–804. https://doi.org/10.1070/rcr472 DOI: https://doi.org/10.1070/RCR4723
Jaiswal, K. K., Chowdhury, C. R., Yadav, D., Verma, R., Dutta, S., Jaiswal, K. S., SangmeshB, N., & Karuppasamy, K. S. K. (2022). Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus, 7, 100118. https://doi.org/10.1016/j.nexus.2022.100118 DOI: https://doi.org/10.1016/j.nexus.2022.100118
Kalair, A., Abas, N., Saleem, M. S., Kalair, A. R., & Khan, N. (2020). Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage, 3(1). https://doi.org/10.1002/est2.135 DOI: https://doi.org/10.1002/est2.135
Zastempowski, M. (2023). Analysis and modeling of innovation factors to replace fossil fuels with renewable energy sources - Evidence from European Union enterprises. Renewable and Sustainable Energy Reviews, 178, 113262. https://doi.org/10.1016/j.rser.2023.113262 DOI: https://doi.org/10.1016/j.rser.2023.113262
Lima, M., Mendes, L., Mothé, G., Linhares, F., De Castro, M., Da Silva, M., & Sthel. (2020). Renewable energy in reducing greenhouse gas emissions: Reaching the goals of the Paris agreement in Brazil. Environmental Development, 33, 100504. https://doi.org/10.1016/j.envdev.2020.100504 DOI: https://doi.org/10.1016/j.envdev.2020.100504
Ogoegbulem, O., Nwala, B. O., & Obukohwo, V. (2022). Numerical Quantification of Co-Existence and survival of White yam and Yellow yam species: Variations of Intra-Species Coefficients. International Journal of Physical Sciences Research, 6(1), 1–14. https://doi.org/10.37745/10.37745/ijpsr.17/vol6n1114 DOI: https://doi.org/10.37745/10.37745/ijpsr.17/vol6n1114
Igliński, B., Piechota, G., Kiełkowska, U., Kujawski, W., Pietrzak, M. B., & Skrzatek, M. (2022). The assessment of solar photovoltaic in Poland: the photovoltaics potential, perspectives and development. Clean Technologies and Environmental Policy, 25(1), 281–298. https://doi.org/10.1007/s10098-022-02403-0 DOI: https://doi.org/10.1007/s10098-022-02403-0
Vijayan, D. S., Koda, E., Sivasuriyan, A., Winkler, J., Devarajan, P., Kumar, R. S., Jakimiuk, A., Osinski, P., Podlasek, A., & Vaverková, M. D. (2023). Advancements in Solar Panel Technology in Civil Engineering for Revolutionizing Renewable Energy Solutions—A Review. Energies, 16(18), 6579. https://doi.org/10.3390/en16186579 DOI: https://doi.org/10.3390/en16186579
Jun, Y., Park, K., & Song, Y. (2021). A study on the structure of Solar/Photovoltaic Hybrid system for the purpose of preventing overheat and improving the system performance. Solar Energy, 230, 470–484. https://doi.org/10.1016/j.solener.2021.10.019 DOI: https://doi.org/10.1016/j.solener.2021.10.019
Al-Kayiem, H. H., & Reda, M. N. (2021). Analysis of solar photovoltaic panel integrated with ground heat exchanger for thermal mana gement. International Journal of Energy Production and Management, 6(1), 17–31. https://doi.org/10.2495/eq-v6-n1-17-31 DOI: https://doi.org/10.2495/EQ-V6-N1-17-31
Wang, D., Qi, T., Liu, Y., Wang, Y., Fan, J., Wang, Y., & Du, H. (2020). A method for evaluating both shading and power generation effects of rooftop solar PV panels for different climate zones of China. Solar Energy, 205, 432–445. https://doi.org/10.1016/j.solener.2020.05.009 DOI: https://doi.org/10.1016/j.solener.2020.05.009
Gong, X., Short, M. P., Auger, T., Charalampopoulou, E., & Lambrinou, K. (2022). Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors. Progress in Materials Science, 126, 100920. https://doi.org/10.1016/j.pmatsci.2022.100920 DOI: https://doi.org/10.1016/j.pmatsci.2022.100920
Senthilkumar, K., Subramaniam, S., Ungtrakul, T., Kumar, T. S. M., Chandrasekar, M., Rajini, N., Siengchin, S., & Parameswaranpillai, J. (2020). Dual cantilever creep and recovery behavior of sisal/hemp fibre reinforced hybrid biocomposites: Effects of layering sequence, accelerated weathering and temperature. Journal of Industrial Textiles, 51(2_suppl), 2372S-2390S. https://doi.org/10.1177/1528083720961416 DOI: https://doi.org/10.1177/1528083720961416
Ismail, K., Lino, F., Henriquez, J., Teggar, M., Laouer, A., Arici, M., Benhorma, A., & Rodríguez, D. (2023). Enhancement Techniques for the reduction of heating and cooling loads in buildings: a review. Journal of Energy and Power Technology, 05(04), 1–44. https://doi.org/10.21926/jept.2304031 DOI: https://doi.org/10.21926/jept.2304031
Nižetić, S., Jurčević, M., Čoko, D., & Arıcı, M. (2021). A novel and effective passive cooling strategy for photovoltaic panel. Renewable and Sustainable Energy Reviews, 145, 111164. https://doi.org/10.1016/j.rser.2021.111164 DOI: https://doi.org/10.1016/j.rser.2021.111164
Dida, M., Boughali, S., Bechki, D., & Bouguettaia, H. (2021). Experimental investigation of a passive cooling system for photovoltaic modules efficiency improvement in hot and arid regions. Energy Conversion and Management, 243, 114328. https://doi.org/10.1016/j.enconman.2021.114328 DOI: https://doi.org/10.1016/j.enconman.2021.114328
Ghadikolaei, S. S. C. (2021). Solar photovoltaic cells performance improvement by cooling technology: An overall review. International Journal of Hydrogen Energy, 46(18), 10939–10972. https://doi.org/10.1016/j.ijhydene.2020.12.164 DOI: https://doi.org/10.1016/j.ijhydene.2020.12.164
Akrouch, M. A., Chahine, K., Faraj, J., Hachem, F., Castelain, C., & Khaled, M. (2023). Advancements in cooling techniques for enhanced efficiency of solar photovoltaic panels: A detailed comprehensive review and innovative classification. Energy and Built Environment. https://doi.org/10.1016/j.enbenv.2023.11.002 DOI: https://doi.org/10.1016/j.enbenv.2023.11.002
Murtadha, T. K., & Hussein, A. A. (2022). Optimization the performance of photovoltaic panels using aluminum-oxide nanofluid as cooling fluid at different concentrations and one-pass flow system. Results in Engineering, 15, 100541. https://doi.org/10.1016/j.rineng.2022.100541 DOI: https://doi.org/10.1016/j.rineng.2022.100541
Dwivedi, P., Sudhakar, K., Soni, A., Solomin, E., & Kirpichnikova, I. (2020). Advanced cooling techniques of P.V. modules: A state of art. Case Studies in Thermal Engineering, 21, 100674. https://doi.org/10.1016/j.csite.2020.100674 DOI: https://doi.org/10.1016/j.csite.2020.100674
Naghavi, Esmaeilzadeh, A., Singh, B., Ang, B., Yoon, T., & Ong, K. (2021). Experimental and numerical assessments of underlying natural air movement on PV modules temperature. Solar Energy, 216, 610–622. https://doi.org/10.1016/j.solener.2021.01.007 DOI: https://doi.org/10.1016/j.solener.2021.01.007
AlAmri, F., AlZohbi, G., AlZahrani, M., & Aboulebdah, M. (2021). Analytical modeling and optimization of a heat sink design for passive cooling of solar PV panel. Sustainability, 13(6), 3490. https://doi.org/10.3390/su13063490 DOI: https://doi.org/10.3390/su13063490
Dixit, K. K., Yadav, I., Gupta, G. K., & Maurya, S. K. (2020). A Review on Cooling Techniques Used For Photovoltaic Panels. 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and Its Control (PARC). https://doi.org/10.1109/parc49193.2020.236626 DOI: https://doi.org/10.1109/PARC49193.2020.236626
Hu, H. H. (2012). Computational fluid dynamics. In Elsevier eBooks (pp. 421–472). https://doi.org/10.1016/b978-0-12-382100-3.10010-1 DOI: https://doi.org/10.1016/B978-0-12-382100-3.10010-1
Gray, A., Boehm, R., & Stone, K. W. (2007). Modeling a Passive Cooling System for Photovoltaic Cells Under Concentration. ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference, 2, 447–454. https://doi.org/10.1115/ht2007-32693 DOI: https://doi.org/10.1115/HT2007-32693
R. Mohan and Govindarajan, (2009). Thermal and flow analysis of CPU with composite heat sinks using CFD, in ICAMB 2009
Winardi, B., Nugroho, A., & Alvin, Y. (2022). Monitoring and Automatic Cooling Systems in Realtime Photovoltaic Based on IoT. Bulletin of Computer Science and Electrical Engineering, 3(2), 55–65. https://doi.org/10.25008/bcsee.v3i2.1164.
Laseinde, O. T., & Ramere, M. D. (2021). Efficiency Improvement in polycrystalline solar panel using thermal control water spraying cooling. Procedia Computer Science, 180, 239–248. https://doi.org/10.1016/j.procs.2021.01.161 DOI: https://doi.org/10.1016/j.procs.2021.01.161
Bevilacqua, P., Bruno, R., Rollo, A., & Ferraro, V. (2022). A novel thermal model for PV panels with back surface spray cooling. Energy, 255, 124401. https://doi.org/10.1016/j.energy.2022.124401 DOI: https://doi.org/10.1016/j.energy.2022.124401
Mohammed, M., Riad, K., & Alqahtani, N. (2022). Design of a smart IoT-Based control system for remotely managing cold storage facilities. Sensors, 22(13), 4680. https://doi.org/10.3390/s22134680 DOI: https://doi.org/10.3390/s22134680
Chien, Y. C., & Tsai, H. L. (2018). Improving the performance of photovoltaic modules via water spraying: Design and implementation of a remote-controlled cooling system. Renewable Energy, 126, 64-71. https://doi.org/10.1016/j.renene.2018.02.0803.
Kumar, M., & Kumar, A. (2020). Enhancing the efficiency of PV panels using automated water cooling technology. Solar Energy, 196, 186-194. https://doi.org/10.1016/j.solener.2019.12.023. DOI: https://doi.org/10.1016/j.solener.2019.12.023
Mehedi, M. a. a. A., & Iqbal, M. T. (2021). Optimal design, dynamic modeling and analysis of a hybrid power system for a catamarans boat in Bangladesh. European Journal of Electrical Engineering and Computer Science, 5(1), 48–61. https://doi.org/10.24018/ejece.2021.5.1.294 DOI: https://doi.org/10.24018/ejece.2021.5.1.294
Elsabahy, M. M., Emam, M., Sekiguchi, H., & Ahmed, M. (2023). Performance mapping of silicon-based solar cell for efficient power generation and thermal utilization: Effect of cell encapsulation, temperature coefficient, and reference efficiency. Applied Energy, 356, 122385. https://doi.org/10.1016/j.apenergy.2023.122385 DOI: https://doi.org/10.1016/j.apenergy.2023.122385
Sanchez-Sutil, F., & Cano-Ortega, A. (2022). Smart plug for monitoring and controlling electrical devices with a wireless communication system integrated in a LoRaWAN. Expert Systems With Applications, 213, 118976. https://doi.org/10.1016/j.eswa.2022.118976 DOI: https://doi.org/10.1016/j.eswa.2022.118976
Mendez-Monroy, P. E., May, E. C., Torres, M. J., Hernández, J. L. G., Romero, M. C., Dominguez, I. S., Tzuc, O. M., & Bassam, A. (2022). IoT System for the Continuous Electrical and Environmental Monitoring into Mexican Social Housing Evaluated under Tropical Climate Conditions. Journal of Sensors, 2022, 1–20. https://doi.org/10.1155/2022/5508713. DOI: https://doi.org/10.1155/2022/5508713
Khandakar, A., Chowdhury, M. E. H., Kazi, M. K., Benhmed, K., Touati, F., Al-Hitmi, M., & Gonzales, A. J. S. P. (2019). Machine learning based photovoltaics (PV) power prediction using different environmental parameters of Qatar. Energies, 12(14), 2782. https://doi.org/10.3390/en12142782 DOI: https://doi.org/10.3390/en12142782
Bayrak, F., Oztop, H. F., & Selimefendigil, F. (2019). Effects of different fin parameters on temperature and efficiency for cooling of photovoltaic panels under natural convection. Solar Energy, 188, 484–494. https://doi.org/10.1016/j.solener.2019.06.036. DOI: https://doi.org/10.1016/j.solener.2019.06.036
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.