Stability Analysis and Numerical Approach to Chemotherapy Model for the Treatment of Lung Cancer

Authors

  • R. Ilakkiya Nehru Institute of Engineering and Technology, Coimbatore -641105, Tamil Nadu, India
  • T. Jayakumar Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641020, Tamilnadu, India
  • S. Sujitha 3Department of Science and Humanities, Sree Sakthi Engineering College, Coimbatore - 641104.Tamilnadu, India
  • E. Vargees Kaviyan Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641020

DOI:

https://doi.org/10.22399/ijcesen.1095

Keywords:

Lung cancer, Healthy cells, Tumor cells, Chemotherapy treatment

Abstract

This paper introduces and examines a mathematical model aimed at understand- ing the efficacy of chemotherapy in treating lung cancer. Through the utilization of differential equations, we delve into the intricate interplay between healthy cells, tumor cells, damaged tumor cells, and the impact of chemotherapy. Our analytical deductions are substantiated through extensive numerical simulations, revealing the profound effectiveness of chemotherapy in curbing tumor progression. Addition- ally, stability analysis is discussed and numerical simulations are suggested for the model that we have presented. These findings not only contribute significantly to the realm of lung cancer research but also hold substantial promise for therapeutic advancements. Moreover, the insights gleaned from this study are poised to enrich educational endeavors pertaining to lung cancer modeling, thereby fostering a deeper understanding of its underlying dynamics and treatment strategies.

References

Liuyong Pang, Lin Shen, and Zhong Zhao, (2016). Mathematical Modelling and Analysis of the Tumor Hindawi Publishing Corporation, Computational and Mathematical Methods in Medicine, 2016;6260474,12, doi:10.1155/2016/6260474. DOI: https://doi.org/10.1155/2016/6260474

Yuting Li 1, Bingshuo Yan 1, Shiming He, (2023). Advances and challenges in the treatment of lung cancer, Published by Elsevier Masson SAS, 0753-3322, 2023, doi:10.1016/j.biopha.2023.115891. DOI: https://doi.org/10.1016/j.biopha.2023.115891

B.M.Alexander, M.Othus, H.B.Caglar, A.M.Allen, (2011) Tumor volume is a prognostic factor in non–small cell lung cancer treated with chemo radiotherapy, International Journal of Radiation Oncology, Biology, Physics, 79(5), 1381-1387, doi:10.1016/j.ijrobp.2009.12.060. DOI: https://doi.org/10.1016/j.ijrobp.2009.12.060

Changran Geng, Harald Paganetti and Clemens Grassberger, (2017). Prediction of Treatment Response for Combined Chemo and Radiation Therapy for Non-Small Cell Lung Cancer Patients Using a Bio-Mathematical Model, Scientific Reports 7(1);13542, doi:10.1038/s41598-017-13646-z . DOI: https://doi.org/10.1038/s41598-017-13646-z

Sujitha, S., Jayakumar, T., Maheskumar, D. et al. (2024). An analytical and numerical approach to chemo-radiotherapy model for the treatment of brain tumor. OPSEARCH https://doi.org/10.1007/s12597-024-00782-0 DOI: https://doi.org/10.1007/s12597-024-00782-0

E.Vargees Kaviyan, T.Jayakumar, S.Sujitha, D.Maheskumar, Stability Analysis for Healthy Cells Interaction between Glioma and Immunothrapy, JETIR 2307852, 10(7) www.jetir.org (ISSN-2349-5162).

H.H. Dubben, H.D. Thames, and H.P.B. (1998). Tumor volume: a basic and specific response predictor in radiotherapy, Radiotherapy and Oncology, 47(2), 167-174, doi:10.1016/s0167-8140(97)00215-6. DOI: https://doi.org/10.1016/S0167-8140(97)00215-6

K.C.Iarosz et al., (2015) Mathematical model of brain tumour with glia-neuron Interactions and chemotherapy treatment, Journal of Theoretical Biology, 368;113-121, doi:10.1016/j.jtbi.2015.01.006. DOI: https://doi.org/10.1016/j.jtbi.2015.01.006

S.Khajanchi, (2019). Stability Analysis of a Mathematical Model for Glioma-Immune In- teraction under Optimal Therapy, International Journal of Nonlinear Sciences and Numerical Simulation, 20(3-4), 269-285, doi:10.1515/ijnsns-2017-0206. DOI: https://doi.org/10.1515/ijnsns-2017-0206

N.Kronik, Y.Kogan, V.Vainstein, Z.Agur, (2008). Improving alloreactive CTL immunother- apy for malignant gliomas using a simulation model of their interactive dynamics, Cancer immunology, immunotherapy, 57(3), 425-439, doi:10.1007/s00262-007- 0387-z. DOI: https://doi.org/10.1007/s00262-007-0387-z

V.A. Kuznetsov, I.A.Makalkin, M.A. Taylor, A.S.Perelson, (1994). Non-linear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bulletin of mathematical biology, 56(2);295-321, doi:10.1007/bf02460644. DOI: https://doi.org/10.1016/S0092-8240(05)80260-5

S.T.R.Pinho, F.S.Bacelar, R.F.S.Andrade, H.I.Freedman, (2013). A mathematical model for the effect of anti-angiogenic therapy in the treatment of cancer tumours by chemotherapy, Nonlinear Analysis: Real World Applications, 14(1), 815-828, doi:10.1016/j.nonrwa.2012.07.034. DOI: https://doi.org/10.1016/j.nonrwa.2012.07.034

W.Rzeski et al., (2004) Anticancer agents are potent neurotoxins in vitro and in vivo, Annals of Neurology, 56(3), 351-360, doi:10.1002/ana.20185. DOI: https://doi.org/10.1002/ana.20185

N.H.Segal et. al., (2014) A phase I multi-arm dose-expansion study of the anti-programmed cell death-ligand-1(Pd-L1) antibody medi4736: preliminary data, Annals of Oncology, 25(4), IV365, doi:10.1093/annonc/mdu342.11. DOI: https://doi.org/10.1093/annonc/mdu342.11

M.Soliman et. al., (2013). GTV differentially impacts locoregional control of non-small cell lung cancer (NSCLC) after different fractionation schedules: subgroup analysis of the prospective randomized CHARTWEL trial, Radiotherapy and Oncology, 106(3), 299-304, doi:10.1016/j.radonc.2012.12.008. DOI: https://doi.org/10.1016/j.radonc.2012.12.008

J.S. Spratt, T.L. Spratt, (1964), Rates of growth of pulmonary metastases and host survival, Annals of Surgery, 159;161-171, doi:10.1097/00000658-196402000-00001 . DOI: https://doi.org/10.1097/00000658-196402000-00001

J.Vaage, (1973). Influence of tumour antigen on maintainance versus depression of tumour-specific immunity, Cancer Research, 33(3), 493-503doi:https://aacrjournals.org/cancerres/article/33/3/493/479220/Influence-of-Tumor-Antigen-on-Maintenance-versus.

M.W. Wasik et. al., (2008). Increasing tumor volume is predictive of poor overall and progression-free survival: secondary analysis of the Radiation Therapy Oncology Group 93-11 phase I-II radiation dose-escalation study in patients with inoperable non–small-cell lung cancer, Inernational Journal of Radiation Oncology, Biology, Physics, 70(2);385-390, doi:10.1016/j.ijrobp.2007.06.034. DOI: https://doi.org/10.1016/j.ijrobp.2007.06.034

Zijian Liu and Chenxue Yang, A (2014). Mathematical Model of Cancer Treatment by Radiotherapy, Computational and Mathematical methods in Medicine. 2014;172923, 12 pages, http://dx.doi.org/10.1155/2014/172923. DOI: https://doi.org/10.1155/2014/172923

Kozłowska E, Suwiński R, Giglok M, Świerniak A, Kimmel M (2020) Mathematical model predicts response to chemotherapy in advanced non-resectable non-small cell lung cancer patients treated with platinum-based doublet. PLoS Comput Biol 16(10): e1008234. https://doi.org/10.1371/journal.pcbi.1008234 DOI: https://doi.org/10.1371/journal.pcbi.1008234

Çağlan, A., & Dirican, B. (2024). Evaluation of Dosimetric and Radiobiological Parameters for Different TPS Dose Calculation Algorithms and Plans for Lung Cancer Radiotherapy. International Journal of Computational and Experimental Science and Engineering, 10(2). https://doi.org/10.22399/ijcesen.335 DOI: https://doi.org/10.22399/ijcesen.335

TOPRAK, A. (2024). Determination of Colorectal Cancer and Lung Cancer Related LncRNAs based on Deep Autoencoder and Deep Neural Network. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.636 DOI: https://doi.org/10.22399/ijcesen.636

Shajeni Justin, & Tamil Selvan. (2025). A Systematic Comparative Study on the use of Machine Learning Techniques to Predict Lung Cancer and its Metastasis to the Liver: LCLM-Predictor Model. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.788 DOI: https://doi.org/10.22399/ijcesen.788

G Powathil, M Kohandel , S Sivaloganathan , A Oza and M Milosevic, (2007). Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy, Phys. Med. Biol. 52;3291–3306, doi:10.1088/0031-9155/52/11/023. DOI: https://doi.org/10.1088/0031-9155/52/11/023

R.L.Souhami, I.Tannock, P.Hohenberger, and J.-C.Horiot, (2002). Oxford Textbook of Oncology, vol. 1, Oxford University Press, Oxford, UK, 2nd edition, 2002, doi:10.1038/sj.bjc.6600425. DOI: https://doi.org/10.1038/sj.bjc.6600425

Bentzen,S.M.,Saunders, M.I. and Dische, S. (2002). From CHART to CHARTWEL in Non-small Cell Lung Cancer: Clinical Radiobiological Modelling of the Expected Change in Outcome. Clinical Oncology 14, 372–381, doi:https://doi.org/10.1053/clon.2002.0117. DOI: https://doi.org/10.1053/clon.2002.0117

LaSalle, J.P.(ed.):The stability of dynamical systems, SIAM, Philadelphia, (1976) DOI: https://doi.org/10.21236/ADA031020

Downloads

Published

2025-03-04

How to Cite

R. Ilakkiya, T. Jayakumar, S. Sujitha, & E. Vargees Kaviyan. (2025). Stability Analysis and Numerical Approach to Chemotherapy Model for the Treatment of Lung Cancer. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1095

Issue

Section

Research Article