Analysis of TSP: Simulated Annealing and Genetic Algorithm Approaches
Keywords:
TSP, Simulated Annealing (SA), Genetic Algorithms (GA), Integer Programming (MIP)Abstract
This paper analyzes the performance of the popular heuristic methods ‘Simulated Annealing (SA)’ and ‘Genetic Algorithm (GA)’ on the symmetric TSP. TSP is a well-known combinatorial optimization problem in NP-complete class. NP-completeness of TSP originates many specific approximation algorithms to find optimal or near optimal solutions in a reasonable time. On the other hand, both SA and GA are general purpose heuristic methods that are applicable to almost every kind of problem whose solution lies inside a search space. The performance of SA and GA depends on many factors such as the nature of the problem, design of the algorithm, parameter values, etc. In this paper, a GA and an SA algorithm are given and their performance with re-spect to several factors is analyzed. The algorithms are tested on some benchmark problems (TSPLIB) which are obtainable via Internet from http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 International Journal of Computational and Experimental Science and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.