Numerical Modeling-Based Comparison of Leap-Frog and Implicit Crank-Nicolson Schemes for Instantaneous Spill of Pollutant in Rivers
DOI:
https://doi.org/10.22399/ijcesen.1190Keywords:
Advection Dispersion Equation, Instantaneous Spills, Crank-Nicolson Scheme, Leap-Frog Scheme, Numerical Methods, Pollutants TransportAbstract
Numerical modeling of pollutant spills that are released instantaneously in rivers has been commonly applied for water quality purposes. Recently, different numerical schemes have been used to solve for the river hydrodynamics from the shallow water equations (SWEs), affecting the longitudinal pollutant concentrations prediction of the advection-dispersion equation (ADE). In this study, two numerical schemes for solving the SWEs, Explicit Leap-Frog Scheme (ELFs) and Implicit Crank-Nicolson Scheme (ICNs), were implemented based on a field case study, and the pollutant concentrations distribution along the river were explored and compared to the ADE analytical solution. Results showed that the maximum concentration predicted by the ICNs decreased from 0.1071 to 0.0084 ppm after 5 and 8 days from the spill date, respectively, with an average flow velocity of 0.1545 m/sec. On the other hand, the maximum concentration predicted by the ELFs decreased from 0.1068 to 0.0083 ppm during the same period with an average flow velocity of 0.1550 m/sec. Accordingly. both schemes revealed good agreement compared to the analytical solution, for instance, at the simulation time of 8 days the ICNs statistical errors were RMSE of 0.000174 ppm and MAE of 0.0000771 ppm, while the ELFs errors were RMSE of 0.000182 ppm and MAE of 0.0000824 ppm. In terms of computational time, the ICNs spent higher cost of about 0.5982 sec during the simulation period of 8 days, while the ELFs took about 0.1738 sec for the same period. Furthermore, for both schemes as the longitudinal increments value of the finite difference grid increases, the model time step increases and the execution time decreases. Thus, it is necessary to choose time step and spatial increment length that obey the governing equation stability condition in order to conserve the concentrations distribution along the river spatially and temporally and make good predictions.
References
Al-Dalimy, S. Z. and Al-Zubaidi, H. A. M. (2023). One-dimensional model predictions of carbonaceous biological oxygen demand and dissolved oxygen for Hilla river water quality, Iraq. Ecological Engineering and Environmental Technology. 24(7). https://doi.org/10.12912/27197050/170100 DOI: https://doi.org/10.12912/27197050/170100
Al-Zubaidi, H. A. M., & Wells, S. A. (2018). Comparison of a 2D and 3D Hydrodynamic and Water Quality Model for Lake Systems. World Environmental and Water Resources Congress 2018: Watershed Management. Irrigation and Drainage, and Water Resources Planning and Management - Selected Papers from the World Environmental and Water Resources Congress 2018. https://doi.org/10.1061/9780784481400.007 DOI: https://doi.org/10.1061/9780784481400.007
Al-Zubaidi, H. A. M., & Wells, S. A. (2020). Analytical and field verification of a 3D hydrodynamic and water quality numerical scheme based on the 2D formulation in CE-QUAL-W2. Journal of Hydraulic Research. 58(1). https://doi.org/10.1080/00221686.2018.1499051 DOI: https://doi.org/10.1080/00221686.2018.1499051
Andallah, L., & Khatun, M. (2020). Numerical solution of advection-diffusion equation using finite difference schemes. Bangladesh Journal of Scientific and Industrial Research. 55(1);15–22. https://doi.org/10.3329/bjsir.v55i1.46728 DOI: https://doi.org/10.3329/bjsir.v55i1.46728
Ani, E. C., Wallis, S., Kraslawski, A., & Agachi, P. S. (2009). Development, calibration and evaluation of two mathematical models for pollutant transport in a small river. Environmental Modelling and Software. 24(10);1139–1152. https://doi.org/10.1016/j.envsoft.2009.03.008 DOI: https://doi.org/10.1016/j.envsoft.2009.03.008
Ara, K. N. I., Rahaman, Md. M., & Alam, Md. S. (2021). Numerical Solution of Advection Diffusion Equation Using Semi-Discretization Scheme. Applied Mathematics. 12(12);1236–1247. https://doi.org/10.4236/am.2021.1212079 DOI: https://doi.org/10.4236/am.2021.1212079
Azad, A. K., & Andallah, L. S. (2016). Numerical Study on the Stability of Finite Differ-ence Schemes for Solving Advection Diffusion Equation. ULAB Journal Of Science And Engineering. 7(1).
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science. 7;1–24. https://doi.org/10.7717/PEERJ-CS.623 DOI: https://doi.org/10.7717/peerj-cs.623
Chin, D. A. (2006). Water-Quality Engineering in Natural Systems. Water-Quality Engineering in Natural Systems. https://doi.org/10.1002/0471784559 DOI: https://doi.org/10.1002/0471784559
Clark, R. M., Vicory, A. H., & Goodrich, J. A. (1990). The Ohio River Oil Spill: A Case Study. Journal AWWA. 82(3). https://doi.org/10.1002/j.1551-8833.1990.tb06934.x DOI: https://doi.org/10.1002/j.1551-8833.1990.tb06934.x
De Almeida, G. A. M., Bates, P., Freer, J. E., & Souvignet, M. (2012). Improving the stability of a simple formulation of the shallow water equations for 2-D flood modeling. Water Resources Research. 48(5). https://doi.org/10.1029/2011WR011570 DOI: https://doi.org/10.1029/2011WR011570
Delis, A. I., & Nikolos, I. K. (2021). Shallow water equations in hydraulics: Modeling, numerics and applications. Water (Switzerland). 13(24). https://doi.org/10.3390/w13243598 DOI: https://doi.org/10.3390/w13243598
Deng, Z.-Q., Singh, V. P., Asce, F., & Bengtsson, L. (2004). Numerical Solution of Fractional Advection-Dispersion Equation. https://doi.org/10.1061/ASCE0733-94292004130:5422 DOI: https://doi.org/10.1061/(ASCE)0733-9429(2004)130:5(422)
Durran, D. R. (1999). Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer New York. https://doi.org/10.1007/978-1-4757-3081-4 DOI: https://doi.org/10.1007/978-1-4757-3081-4
El-Mikkawy, M., & Atlan, F. (2014). Algorithms for Solving Linear Systems of Equations of Tridiagonal Type via Transformations. Applied Mathematics. 05(03);413–422. https://doi.org/10.4236/am.2014.53042 DOI: https://doi.org/10.4236/am.2014.53042
Ghane, A., Mazaheri, M., & Mohammad Vali Samani, J. (2016). Location and release time identification of pollution point source in river networks based on the Backward Probability Method. Journal of Environmental Management. 180;164–171. https://doi.org/10.1016/j.jenvman.2016.05.015 DOI: https://doi.org/10.1016/j.jenvman.2016.05.015
Haltiner, G. J., and R. T. Williams, 1980: Numerical Prediction and Dynamic Meteorology. 2nd ed. Wiley. 477. ISBN-13: 978-0471059714, ISBN-10: 0471059714
Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific Model Development. 15(14);5481–5487. https://doi.org/10.5194/gmd-15-5481-2022 DOI: https://doi.org/10.5194/gmd-15-5481-2022
Jamalludin, D., Ahmad, A., Zakaria, Z., Hashim, M., Ibrahim, A., & Ahmad, F. (2019). Distribution of bulk unit weight of residual soils from the Northern Malaysia. Journal of Physics: Conference Series. 1349(1). https://doi.org/10.1088/1742-6596/1349/1/012025 DOI: https://doi.org/10.1088/1742-6596/1349/1/012025
Keppens, R., Toth, G., Botchev, M., & Van Der Ploeg, A. (1999). Implicit And Semi-Implicit Schemes: Algorithms. International Journal For Numerical Methods In Fluids. 30(3); 335-352. https://doi.org/10.1002/(sici)1097-0363(19990615)30:3<335::aid-fld923>3.0.co;2-u DOI: https://doi.org/10.1002/(SICI)1097-0363(19990615)30:3<335::AID-FLD923>3.3.CO;2-L
Kohzadi, Z., Safdari, R., & Haghighi, K. S. (2021). Designing an intelligent system for diagnosing type of sleep apnea and determining its severity. Frontiers in Health Informatics. 10. https://doi.org/10.30699/fhi.v10i1.287 DOI: https://doi.org/10.30699/fhi.v10i1.287
Legleiter, C. J., Sansom, B. J., & Jacobson, R. B. (2022). Remote Sensing of Visible Dye Concentrations During a Tracer Experiment on a Large, Turbid River. Water Resources Research. 58(4). https://doi.org/10.1029/2021WR031396 DOI: https://doi.org/10.1029/2021WR031396
Li, J., & Chen, Y.-T. (2019). Computational Partial Differential Equations Using MATLAB®. Computational Partial Differential Equations Using MATLAB®. https://doi.org/10.1201/9780429266027 DOI: https://doi.org/10.1201/9780429266027
Mehrmoosavi, B., Ghobadian, R., & Javn, M. (2023). Simiulation of dam break flow based on numerical solving of shallow water equations in curvilinear coordinate. Irrigation Sciences and Engineering (JISE). 46(1);15–31. https://doi.org/10.22055/jise.2018.23929.1700
Mesinger, F., & Arakawa, A. (1976). Numerical Methods Used In Atmospheric Models. Global Atmospheric Research Programme (GARP) WMO - ICSU Joint Organizing Committee. 6(17)
Owowenu, E. K., Nnadozie, C. F., Akamagwuna, F., Noundou, X. S., Uku, J. E., & Odume, O. N. (2023). A critical review of environmental factors influencing the transport dynamics of microplastics in riverine systems: implications for ecological studies. Aquatic Ecology. 57(2);557–570). https://doi.org/10.1007/s10452-023-10029-7 DOI: https://doi.org/10.1007/s10452-023-10029-7
Panchenko, E., & Alabyan, A. (2022). Friction factor evaluation in tidal rivers and estuaries. MethodsX. 9. https://doi.org/10.1016/j.mex.2022.101669 DOI: https://doi.org/10.1016/j.mex.2022.101669
Parsaie, A., & Haghiabi, A. H. (2017). Computational Modeling of Pollution Transmission in Rivers. Applied Water Science. 7(3);1213–1222. https://doi.org/10.1007/s13201-015-0319-6 DOI: https://doi.org/10.1007/s13201-015-0319-6
Peruzzi, C., Galli, A., Chiaradia, E. A., & Masseroni, D. (2021). Evaluating longitudinal dispersion of scalars in rural channels of agro-urban environments. Environmental Fluid Mechanics. 21(4);925–954. https://doi.org/10.1007/s10652-021-09804-7 DOI: https://doi.org/10.1007/s10652-021-09804-7
Phosri, P., & Pochai, N. (2020). Explicit Finite Difference Techniques for a One-Dimensional Water Pollutant Dispersion Model in a Stream. International Journal of Simulation: Systems, Science & Technology. https://doi.org/10.5013/ijssst.a.21.03.01 DOI: https://doi.org/10.5013/IJSSST.a.21.03.01
Pochai, N., & Phosri, P. (2021). A Couple Mathematical Models of the Water Quality Measurement in a Stream using Upwind Implicit Methods. IAENG International Journal of Applied Mathematics. 51(1). https://www.iaeng.org/IJAM/issues_v51/issue_1/IJAM_51_1_27.pdf
Rahaman, M. M., Andallah, L. S., & Alam, M. S. (2017). Numerical solution of advection diffusion reaction equation coupled with shallow water equation. International Journal of Scientific & Engineering Research. 8(11). http://www.ijser.org
Rahaman, M. M., Hossain, M. J., Hossain, M. B., Galib, S. M., & Sikdar, M. M. H. (2015). Error Estimation of an Explicit Finite Difference Scheme for a Water Pollution Model. IOSR Journal of Mathematics. 11(4);47–61. https://doi.org/10.9790/5728-11454761
Ritta, A. G. S. L., Almeida, T. R., Chacaltana, J. T. A., & Moreira, R. M. (2020). Numerical analysis of the effluent dispersion in rivers with different longitudinal diffusion coefficients. Journal of Applied Fluid Mechanics. 13(5);1551–1559. https://doi.org/10.36884/JAFM.13.05.31015 DOI: https://doi.org/10.36884/jafm.13.05.31015
Ramezani, M., Noori, R., Hooshyaripor, F., Deng, Z., & Sarang, A. (2019). Numerical modelling-based comparison of longitudinal dispersion coefficient formulas for solute transport in rivers. Hydrological Sciences Journal. 64(7).808–819. https://doi.org/10.1080/02626667.2019.1605240 DOI: https://doi.org/10.1080/02626667.2019.1605240
Robeson, S. M., & Willmott, C. J. (2023). Decomposition of the mean absolute error (MAE) into systematic and unsystematic components. PLoS ONE. 18(2). https://doi.org/10.1371/journal.pone.0279774 DOI: https://doi.org/10.1371/journal.pone.0279774
Saadatpour, M., & Afshar, A. (2013). Multi Objective Simulation-Optimization Approach in Pollution Spill Response Management Model in Reservoirs. Water Resources Management. 27(6);1851–1865. https://doi.org/10.1007/s11269-012-0230-y DOI: https://doi.org/10.1007/s11269-012-0230-y
Saiduzzaman, Md &, Ray, S. K. (2013). Comparison of Numerical Schemes for Shallow Water Equation. Global Journal of Science Frontier Research Mathematics and Decision Sciences. 13(4).
Sanjaya, F., & Mungkasi, S. (2017). A simple but accurate explicit finite difference method for the advection-diffusion equation. Journal of Physics: Conference Series. 909(1). https://doi.org/10.1088/1742-6596/909/1/012038 DOI: https://doi.org/10.1088/1742-6596/909/1/012038
Sarkhosh, P., & Jin, Y. C. (2021). MPS-Based Model to Solve One-Dimensional Shallow Water Equations. Water Resources Research. 57(4). https://doi.org/10.1029/2020WR028742 DOI: https://doi.org/10.1029/2020WR028742
Silavwe, D. D., Brink, I. C., & Wallis, S. G. (2019). Assessment of some numerical methods for estimating the parameters of the one-dimensional advection–dispersion model. Acta Geophysica. 67(3);999–1016. https://doi.org/10.1007/s11600-019-00293-3 DOI: https://doi.org/10.1007/s11600-019-00293-3
Sukron, M., Habibah, U., & Hidayat, N. (2021). Numerical solution of Saint-Venant equation using Runge-Kutta fourth-order method. Journal of Physics: Conference Series. 1872(1). https://doi.org/10.1088/1742-6596/1872/1/012036 DOI: https://doi.org/10.1088/1742-6596/1872/1/012036
Sun, W. Y. (2010). Instability in leapfrog and forward-backward schemes. Monthly Weather Review. 138(5);1497–1501. https://doi.org/10.1175/2009MWR3127.1 DOI: https://doi.org/10.1175/2009MWR3127.1
Thongmoon, M., & Mckibbin, & R. (2006). A Comparison of Some Numerical Methods for the Advection-Diffusion Equation. Res. Lett. Inf. Math. Sci. 10. http://iims.massey.ac.nz/research/letters/49
Timis, E. C., Cristea, V. M., & Agachi, P. S. (2015). Factors influencing pollutant transport in rivers: Fickian approach applied to the Somes river. Revista de Chimie. 66(9);1495-1503.
Tsanis, I. K. (2007). A wind-driven hydrodynamic and pollutant transport model. Global NEST Journal. 9(2). https://doi.org/10.30955/gnj.000256 DOI: https://doi.org/10.30955/gnj.000256
Valiani, A., & Caleffi, V. (2024). A one-dimensional augmented Shallow Water Equations system for channels of arbitrary cross-section. Advances in Water Resources. 189. https://doi.org/10.1016/j.advwatres.2024.104735 DOI: https://doi.org/10.1016/j.advwatres.2024.104735
Vreugdenhil, C. B. (2013). Numerical methods for shallow-water flow. Springer Science & Business Media.
Wang, X., Yang, J., Wang, F., Xu, N., Li, P., & Wang, A. (2023). Numerical Modeling of the Dispersion Characteristics of Pollutants in the Confluence Area of an Asymmetrical River. Water (Switzerland). 15, 3766. https://doi.org/10.3390/w15213766 DOI: https://doi.org/10.3390/w15213766
Welahettige, P., Vaagsaether, K., & Lie, B. (2018). A solution method for one-dimensional shallow water equations using flux limiter centered scheme for open Venturi channels. Journal of Computational Multiphase Flows. 10(4);228–238. https://doi.org/10.1177/1757482X18791895 DOI: https://doi.org/10.1177/1757482X18791895
Wells, S. A. (2002). Basis for the CE-QUAL-W2 version 3 river basin hydrodynamic and water quality model. ASCE International Water Resources Engineering Conference. https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1112&context=cengin_fac
Wu, J., & Yu, X. (2021). Numerical investigation of dissolved oxygen transportation through a coupled swe and streeter-phelps model. Mathematical Problems in Engineering. 2021. https://doi.org/10.1155/2021/6663696 DOI: https://doi.org/10.1155/2021/6663696
Xia, X., & Liang, Q. (2018). A new efficient implicit scheme for discretising the stiff friction terms in the shallow water equations. Advances in Water Resources. 117;87–97. https://doi.org/10.1016/j.advwatres.2018.05.004 DOI: https://doi.org/10.1016/j.advwatres.2018.05.004
Yan, B., Liu, Y., Gao, Z., & Liu, D. (2022). Simulation of Sudden Water Pollution Accidents in Hunhe River Basin Upstream of Dahuofang Reservoir. Water (Switzerland). 14(6). https://doi.org/10.3390/w14060925 DOI: https://doi.org/10.3390/w14060925
Yarodji, M. A. K., Badé, R., & Saley, B. (2020). Study of the 1D Saint-Venant Equations and Application to the Simulation of a Flood Problem. Journal of Applied Mathematics and Physics. 08(07);1193–1206. https://doi.org/10.4236/jamp.2020.87090 DOI: https://doi.org/10.4236/jamp.2020.87090
Yip, B. F., Alias, N. A. F., & Kasiman, E. H. (2021). Numerical Modelling of Pollutant Transport in a Straight Narrow Channel using Upwind Finite Difference Method. IOP Conference Series: Materials Science and Engineering, 1153(1), 012003. https://doi.org/10.1088/1757-899x/1153/1/012003 DOI: https://doi.org/10.1088/1757-899X/1153/1/012003
Zeunert, S., & Meon, G. (2020). Influence of the spatial and temporal monitoring design on the identification of an instantaneous pollutant release in a river. Advances in Water Resources. 146. https://doi.org/10.1016/j.advwatres.2020.103788 DOI: https://doi.org/10.1016/j.advwatres.2020.103788
Zhou, J., Bao, W., Li, Y., Cheng, L., & Bao, M. (2018). The modified one-dimensional hydrodynamic model based on the extended Chezy formula. Water (Switzerland). 10(12). https://doi.org/10.3390/w10121743 DOI: https://doi.org/10.3390/w10121743
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.