Optimizing Energy-Efficient Task Offloading in Edge Computing: A Hybrid AI-Based Approach
DOI:
https://doi.org/10.22399/ijcesen.1268Keywords:
Edge Computing, Task Offloading, Hybrid AI, Reinforcement Learning, Deep Neural Networks (DNN), Computational Resource Allocation, IoT OptimizationAbstract
Edge computing has emerged as a pivotal technology for managing computational workloads in latency-sensitive applications by offloading tasks from resource-constrained Internet of Things (IoT) devices to nearby edge servers. However, optimizing task offloading while ensuring energy efficiency remains a significant challenge. This paper proposes a Hybrid AI-Based Task Offloading (HATO) model, integrating Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically allocate computational resources while minimizing energy consumption. The HATO framework formulates task offloading as a multi-objective optimization problem, considering factors such as device workload, network latency, edge server availability, and energy constraints.
Experimental evaluations demonstrate that the proposed model achieves a 27.3% reduction in energy consumption, a 19.6% improvement in task completion time, and a 31.2% enhancement in overall edge server utilization compared to conventional heuristic-based methods. The reinforcement learning module adapts task offloading strategies in real-time, ensuring optimal computational load balancing while minimizing latency. The proposed Hybrid AI-Based Approach outperforms baseline models in diverse edge computing scenarios, making it a scalable and efficient solution for next-generation IoT applications.
References
Negoita, M. G., Neagu, D., & Palade, V. (2005). Computational intelligence: engineering of hybrid systems (Vol. 174). Springer Science & Business Media.
Zhang, J., Williams, S. O., & Wang, H. (2018). Intelligent computing system based on pattern recognition and data mining algorithms. Sustainable Computing: Informatics and Systems, 20, 192-202. DOI: https://doi.org/10.1016/j.suscom.2017.10.010
Agbehadji, I. E., Awuzie, B. O., Ngowi, A. B., & Millham, R. C. (2020). Review of big data analytics, artificial intelligence and nature-inspired computing models towards accurate detection of COVID-19 pandemic cases and contact tracing. International journal of environmental research and public health, 17(15), 5330. DOI: https://doi.org/10.3390/ijerph17155330
Anifowose, F., & Abdulraheem, A. (2011). Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization. Journal of Natural Gas Science and Engineering, 3(3), 505-517. DOI: https://doi.org/10.1016/j.jngse.2011.05.002
Kalantari, A., Kamsin, A., Shamshirband, S., Gani, A., Alinejad-Rokny, H., & Chronopoulos, A. T. (2018). Computational intelligence approaches for classification of medical data: State-of-the-art, future challenges and research directions. Neurocomputing, 276, 2-22. DOI: https://doi.org/10.1016/j.neucom.2017.01.126
Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Umar, A. M., Linus, O. U., ... & Kiru, M. U. (2019). Comprehensive review of artificial neural network applications to pattern recognition. IEEE access, 7, 158820-158846. DOI: https://doi.org/10.1109/ACCESS.2019.2945545
Sakshi, T. M., Tyagi, P., & Jain, V. (2024). Emerging trends in hybrid information systems modeling in artificial intelligence. Hybrid Information Systems: Non-Linear Optimization Strategies with Artificial Intelligence, 115. DOI: https://doi.org/10.1515/9783111331133-007
Dimitropoulos, X., & Riley, G. (2006, May). Modeling autonomous-system relationships. In 20th Workshop on Principles of Advanced and Distributed Simulation (PADS'06) (pp. 143-149). IEEE. DOI: https://doi.org/10.1109/PADS.2006.26
Saleem, M., Khadim, A., Fatima, M., Khan, M. A., Nair, H. K., & Asif, M. (2022, October). ASSMA-SLM: Autonomous System for Smart Motor-Vehicles integrating Artificial and Soft Learning Mechanisms. In 2022 International Conference on Cyber Resilience (ICCR) (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/ICCR56254.2022.9995824
Conway, L., Volz, R., & Walker, M. (1987, March). Tele-autonomous systems: Methods and architectures for intermingling autonomous and telerobotic technology. In Proceedings. 1987 IEEE International Conference on Robotics and Automation (Vol. 4, pp. 1121-1130). IEEE. DOI: https://doi.org/10.1109/ROBOT.1987.1087923
Jo, K., Kim, J., Kim, D., Jang, C., & Sunwoo, M. (2014). Development of autonomous car—Part I: Distributed system architecture and development process. IEEE Transactions on Industrial Electronics, 61(12), 7131-7140. DOI: https://doi.org/10.1109/TIE.2014.2321342
Bakambu, J. N., & Polotski, V. (2007). Autonomous system for navigation and surveying in underground mines. Journal of Field Robotics, 24(10), 829-847. DOI: https://doi.org/10.1002/rob.20213
Jo, K., Kim, J., Kim, D., Jang, C., & Sunwoo, M. (2015). Development of autonomous car—Part II: A case study on the implementation of an autonomous driving system based on distributed architecture. IEEE Transactions on Industrial Electronics, 62(8), 5119-5132. DOI: https://doi.org/10.1109/TIE.2015.2410258
Hadi, G. S., Varianto, R., Trilaksono, B. R., & Budiyono, A. (2014). Autonomous UAV system development for payload dropping mission. Journal of Instrumentation, Automation and Systems, 1(2), 72-77. DOI: https://doi.org/10.21535/jias.v1i2.158
Dimitropoulos, X., Krioukov, D., & Riley, G. (2006). Revealing the autonomous system taxonomy: The machine learning approach. arXiv preprint cs/0604015.
Chedid, R., & Saliba, Y. (1996). Optimization and control of autonomous renewable energy systems. International journal of energy research, 20(7), 609-624. DOI: https://doi.org/10.1002/(SICI)1099-114X(199607)20:7<609::AID-ER176>3.0.CO;2-O
Zhu, X., Chikangaise, P., Shi, W., Chen, W. H., & Yuan, S. (2018). Review of intelligent sprinkler irrigation technologies for remote autonomous system. International Journal of Agricultural & Biological Engineering, 11(1). DOI: https://doi.org/10.25165/j.ijabe.20181101.3557
Maheshwari, R. U., Jayasutha, D., Senthilraja, R., & Thanappan, S. (2024). Development of Digital Twin Technology in Hydraulics Based on Simulating and Enhancing System Performance. Journal of Cybersecurity & Information Management, 13(2). DOI: https://doi.org/10.54216/JCIM.130204
Paulchamy, B., Uma Maheshwari, R., Sudarvizhi AP, D., Anandkumar AP, R., & Ravi, G. (2023). Optimized Feature Selection Techniques for Classifying Electrocorticography Signals. Brain‐Computer Interface: Using Deep Learning Applications, 255-278. DOI: https://doi.org/10.1002/9781119857655.ch11
Paulchamy, B., Chidambaram, S., Jaya, J., & Maheshwari, R. U. (2021). Diagnosis of Retinal Disease Using Retinal Blood Vessel Extraction. In International Conference on Mobile Computing and Sustainable Informatics: ICMCSI 2020 (pp. 343-359). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-49795-8_34
Maheshwari, U. Silingam, K. (2020). Multimodal Image Fusion in Biometric Authentication. Fusion: Practice and Applications, (), 79-91. DOI: https://doi.org/10.54216/FPA.010203 DOI: https://doi.org/10.54216/FPA.010203
R.Uma Maheshwari (2021). ENCRYPTION AND DECRYPTION USING IMAGE PROCESSING TECHNIQUES. International Journal of Engineering Applied Sciences and Technology, 5(12);219-222 DOI: https://doi.org/10.33564/IJEAST.2021.v05i12.037
N.V., R.K., M., A., E., B., J., S.J.P., A., K. and S., P. (2022), "Detection and monitoring of the asymptotic COVID-19 patients using IoT devices and sensors", International Journal of Pervasive Computing and Communications, Vol. 18 No. 4, pp. 407-418. https://doi.org/10.1108/IJPCC-08-2020-0107 DOI: https://doi.org/10.1108/IJPCC-08-2020-0107
Subramani, P., K, S., B, K.R. et al. (2023).Prediction of muscular paralysis disease based on hybrid feature extraction with machine learning technique for COVID-19 and post-COVID-19 patients. Pers Ubiquit Comput 27, 831–844 https://doi.org/10.1007/s00779-021-01531-6 DOI: https://doi.org/10.1007/s00779-021-01531-6
Subramani, P.; Rajendran, G.B.; Sengupta, J.; Pérez de Prado, R.; Divakarachari, P.B. (2020). A Block Bi-Diagonalization-Based Pre-Coding for Indoor Multiple-Input-Multiple-Output-Visible Light Communication System. Energies , 13, 3466. https://doi.org/10.3390/en13133466 DOI: https://doi.org/10.3390/en13133466
Shivappriya, S.N.; Karthikeyan, S.; Prabu, S.; Pérez de Prado, R.; Parameshachari, B.D. (2020) A Modified ABC-SQP-Based Combined Approach for the Optimization of a Parallel Hybrid Electric Vehicle. Energies , 13, 4529. https://doi.org/10.3390/en13174529 DOI: https://doi.org/10.3390/en13174529
Maheshwari, R. U., & Paulchamy, B. (2024). Securing online integrity: a hybrid approach to deepfake detection and removal using Explainable AI and Adversarial Robustness Training. Automatika, 65(4), 1517–1532. https://doi.org/10.1080/00051144.2024.2400640 DOI: https://doi.org/10.1080/00051144.2024.2400640
Rajitha Kotoju, B.N.V. Uma Shankar, Ravinder Reddy Baireddy, M. Aruna, Mohammed Abdullah Mohammed Alnaser, & Imad Hammood Sharqi. (2025). A Deep auto encoder based Framework for efficient weather forecasting. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.429 DOI: https://doi.org/10.22399/ijcesen.429
Kumar, A., & Beniwal, S. (2025). Depression Sentiment Analysis using Machine Learning Techniques:A Review. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.851 DOI: https://doi.org/10.22399/ijcesen.851
M. Kiran Myee, & M. Humera Khanam. (2025). GAN and ResNet Fusion A Novel Approach to Ophthalmic Image Analysis for Glaucoma. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.683 DOI: https://doi.org/10.22399/ijcesen.683
PATHAPATI, S., N. J. NALINI, & Mahesh GADIRAJU. (2024). Comparative Evaluation of EEG signals for Mild Cognitive Impairment using Scalograms and Spectrograms with Deep Learning Models. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.534 DOI: https://doi.org/10.22399/ijcesen.534
S. Amuthan, & N.C. Senthil Kumar. (2025). Emerging Trends in Deep Learning for Early Alzheimer’s Disease Diagnosis and Classification: A Comprehensive Review. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.739 DOI: https://doi.org/10.22399/ijcesen.739
Ibeh, C. V., & Adegbola, A. (2025). AI and Machine Learning for Sustainable Energy: Predictive Modelling, Optimization and Socioeconomic Impact In The USA. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.19 DOI: https://doi.org/10.22399/ijasrar.19
Olola, T. M., & Olatunde, T. I. (2025). Artificial Intelligence in Financial and Supply Chain Optimization: Predictive Analytics for Business Growth and Market Stability in The USA. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.18 DOI: https://doi.org/10.22399/ijasrar.18
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.