Parameter Estimation of Low-Cost Ultrasound and Laser Range Sensors to be Used for Mobile Robot Applications

Authors

  • Celal Onur Gökçe Afyon Kocatepe Üniversitesi
  • Süleyman Yarıkkaya

DOI:

https://doi.org/10.22399/ijcesen.1489

Keywords:

Sensor model, Ultrasound range sensor, Laser range sensor, Low-cost sensor

Abstract

In this study parameters of sensor models are estimated for low-cost ultrasound and laser range sensors. Sensor models that are best suited to simultaneous localization and mapping (SLAM) tasks for mobile robotics applications are used. Mathematical functions of sensor models with relevant parameters to be determined are explained. Particle swarm optimization (PSO) algorithm is used to find the best parameters that explain the experimental measurements optimally. Experiments are conducted for various sizes of obstacles at various distances and results are reported detailly in the corresponding section. Finally, results are discussed and future works to be built on the results are proposed.

References

Bekey, G. A. (1998). On autonomous robots. The Knowledge Engineering Review, 13(2), 143-146.

Ahola, R., & Myllylä, R. (1986). A time-of-flight laser receiver for moving objects. IEEE Transactions on Instrumentation and Measurement, IM–35(2), 216–221. https://doi.org/10.1109/TIM.1986.6499093

Aliyu, A., Kolo, J. G., Mikail, O. O., Agajo, J., Umar, B., & Aguagba, O. I. (2017). An ultrasonic sensor distance induced automatic braking automobile collision avoidance system. 2017 IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON), 570–576. https://doi.org/10.1109/NIGERCON.2017.8281927

Choon-Young Lee, & Ju-Jang Lee. (2000). Object recognition algorithm for adaptive cruise control of vehicles using laser scanning sensor. ITSC2000. 2000 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.00TH8493), 305–310. https://doi.org/10.1109/ITSC.2000.881074

Derkach, M., Matiuk, D., & Skarga-Bandurova, I. (2020). Obstacle Avoidance Algorithm for Small Autonomous Mobile Robot Equipped with Ultrasonic Sensors. 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT), 236–241. https://doi.org/10.1109/DESSERT50317.2020.9125019

Jin, Y., Li, S., Li, J., Sun, H., & Wu, Y. (2018). Design of an Intelligent Active Obstacle Avoidance Car Based on Rotating Ultrasonic Sensors. 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), 753–757. https://doi.org/10.1109/CYBER.2018.8688326

Kai-Tai Song, Chih-Hao Chen, & Huang, C.-H. C. (2004). Design and experimental study of an ultrasonic sensor system for lateral collision avoidance at low speeds. IEEE Intelligent Vehicles Symposium, 2004, 647–652. https://doi.org/10.1109/IVS.2004.1336460

Komarizadehasl, S., Mobaraki, B., Ma, H., Lozano-Galant, J. A., & Turmo, J. (2022). Low-Cost Sensors Accuracy Study and Enhancement Strategy. Applied Sciences (Switzerland), 12(6). https://doi.org/10.3390/app12063186

McCalip, J., Pradhan, M., & Yang, K. (2023). Reinforcement Learning Approaches for Racing and Object Avoidance on AWS DeepRacer. Proceedings - International Computer Software and Applications Conference, 2023-June, 958–961. https://doi.org/10.1109/COMPSAC57700.2023.00129

Yasin, J. N., Mohamed, S. A. S., Haghbayan, M. H., Heikkonen, J., Tenhunen, H., & Plosila, J. (2021). Low-cost ultrasonic based object detection and collision avoidance method for autonomous robots. International Journal of Information Technology (Singapore), 13(1), 97–107. https://doi.org/10.1007/s41870-020-00513-w

Zheng, K., Wu, F., & Chen, X. (2021). Laser-based people detection and obstacle avoidance for a hospital transport robot. Sensors (Switzerland), 21(3), 1–24. https://doi.org/10.3390/s21030961

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., ... & Leonard, J. J. (2016). Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on robotics, 32(6), 1309-1332.

Feder, H. J. S., Leonard, J. J., & Smith, C. M. (1999). Adaptive mobile robot navigation and mapping. The International Journal of Robotics Research, 18(7), 650-668.

Bosse, M., Newman, P., Leonard, J., & Teller, S. (2004). Simultaneous localization and map building in large-scale cyclic environments using the Atlas framework. The International Journal of Robotics Research, 23(12), 1113-1139.

Bosse, M., & Zlot, R. (2009). Keypoint design and evaluation for place recognition in 2D lidar maps. Robotics and Autonomous Systems, 57(12), 1211-1224.

Carrillo, H., Dames, P., Kumar, V., & Castellanos, J. A. (2018). Autonomous robotic exploration using a utility function based on Rényi’s general theory of entropy. Autonomous Robots, 42(2), 235-256.

Umari, H., & Mukhopadhyay, S. (2017, September). Autonomous robotic exploration based on multiple rapidly-exploring randomized trees. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1396-1402). IEEE.

Ahmed, M. F., Masood, K., Fremont, V., & Fantoni, I. (2023). Active slam: A review on last decade. Sensors, 23(19), 8097.

Placed, J. A., Strader, J., Carrillo, H., Atanasov, N., Indelman, V., Carlone, L., & Castellanos, J. A. (2023). A survey on active simultaneous localization and mapping: State of the art and new frontiers. IEEE Transactions on Robotics, 39(3), 1686-1705.

Li, G.; Geng, Y.; Zhang,W. Autonomous Planetary Rover Navigation via A-SLAM. Aircr. Eng. Aerosp. Technol. 2018, 91, 60–68.

Du, J., Carlone, L., Ng, M. K., Bona, B., & Indri, M. (2011, July). A comparative study on active SLAM and autonomous exploration with particle filters. In 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 916-923). IEEE.

Andrade, F., LLofriu, M., Tanco, M. M., Barnech, G. T., & Tejera, G. (2021, October). Active localization for mobile service robots in symmetrical and Open Environments. In 2021 Latin American Robotics Symposium (LARS), 2021 Brazilian Symposium on Robotics (SBR), and 2021 Workshop on Robotics in Education (WRE) (pp. 270-275). IEEE.

Vallvé, J., & Andrade-Cetto, J. (2015, May). Active pose SLAM with RRT. In 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2167-2173). IEEE.

Trivun, D., Šalaka, E., Osmanković, D., Velagić, J., & Osmić, N. (2015, March). Active SLAM-based algorithm for autonomous exploration with mobile robot. In 2015 IEEE International Conference on Industrial Technology (ICIT) (pp. 74-79). IEEE.

Pang, L., Hu, J., Xiao, P., & Liu, S. (2018, August). Active SLAM Based on Geometry Rules and Forward Simulation in Exploration Space. In 2018 IEEE International Conference on Information and Automation (ICIA) (pp. 238-243). IEEE.

Soragna, A., Baldini, M., Joho, D., Kümmerle, R., & Grisetti, G. (2019, November). Active SLAM using connectivity graphs as priors. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 340-346). IEEE.

Carlone, L., Du, J., Kaouk Ng, M., Bona, B., & Indri, M. (2014). Active SLAM and exploration with particle filters using Kullback-Leibler divergence. Journal of Intelligent & Robotic Systems, 75, 291-311.

Placed, J. A., Rodríguez, J. J. G., Tardós, J. D., & Castellanos, J. A. (2022, November). ExplORB-SLAM: Active visual SLAM exploiting the pose-graph topology. In Iberian Robotics conference (pp. 199-210). Cham: Springer International Publishing.

Placed, J. A., & Castellanos, J. A. (2022). A general relationship between optimality criteria and connectivity indices for active graph-SLAM. IEEE Robotics and Automation Letters, 8(2), 816-823.

Huang, J., Zhou, B., Fan, Z., Zhu, Y., Jie, Y., Li, L., & Cheng, H. (2023). FAEL: fast autonomous exploration for large-scale environments with a mobile robot. IEEE Robotics and Automation Letters, 8(3), 1667-1674.

Placed, J. A., & Castellanos, J. A. (2021, September). Fast autonomous robotic exploration using the underlying graph structure. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 6672-6679). IEEE.

Mihálik, M., Malobický, B., Peniak, P., & Vestenický, P. (2022). The new method of active SLAM for mapping using LiDAR. Electronics, 11(7), 1082.

Probabilistic robotics. Sebastian Thrun, Wolfram Burgard, and Dieter Fox.(2005, MIT press.) 647 pages.

Gökçe, C. O. (2024). Automatizing Automatic Controller Design Process: Designing Robust Automatic Controller under High-Amplitude Disturbances Using Particle Swarm Optimized Neural Network Controller. Applied Sciences, 14(17), 7859.

Suriyan, K., & Nagarajan, R. (2024). Particle swarm optimization in biomedical technologies: innovations, challenges, and opportunities. Emerging Technologies for Health Literacy and Medical Practice, 220-238.

Pang, H., Chen, K., Geng, Y., Wu, L., Wang, F., & Liu, J. (2024). Accurate capacity and remaining useful life prediction of lithium-ion batteries based on improved particle swarm optimization and particle filter. Energy, 293, 130555.

Waqas, M., Jan, L., Zafar, M. H., Hassan, S. R., & Asif, R. (2024). A sensor placement approach using multi-objective hypergraph particle swarm optimization to improve effectiveness of structural health monitoring systems. Sensors, 24(5), 1423.

Li, S., & Yoon, H. S. (2024). Enhancing camera calibration for traffic surveillance with an integrated approach of genetic algorithm and particle swarm optimization. Sensors, 24(5), 1456.

Lu, J., Zhou, Y., Ge, Y., Liu, J., & Zhang, C. (2024). Research into Prediction Method for Pressure Pulsations in a Centrifugal Pump Based on Variational Mode Decomposition–Particle Swarm Optimization and Hybrid Deep Learning Models. Sensors, 24(13), 4196.

Candia, D. A., Játiva, P. P., Azurdia Meza, C., Sánchez, I., & Ijaz, M. (2024). Performance Analysis of the Particle Swarm Optimization Algorithm in a VLC System for Localization in Hospital Environments. Applied Sciences, 14(6), 2514.

Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942-1948). IEEE.

Gökçe, B.; Koca, Y.B.; Aslan, Y.; Gökçe, C.O. Particle Swarm Optimization-Based Optimal Pid Control of an Agricultural Mobile Robot. Comptes Rendus de L’Academie Bulgare des Sciences 2021, 74, 568–575, doi:10.7546/CRABS.2021.04.12.

Downloads

Published

2025-04-03

How to Cite

Gökçe, C. O., & Süleyman Yarıkkaya. (2025). Parameter Estimation of Low-Cost Ultrasound and Laser Range Sensors to be Used for Mobile Robot Applications. International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.1489

Issue

Section

Research Article