A Review on Emoji Entry Prediction for Future Finance Market Analysis Using Convolutional Neural Network

Authors

  • PC Lakshmi Narayanan Department of Finance, Loyola Institute of Business Administration, Loyola College, Chennai, India.– 600034. https://orcid.org/0009-0007-5687-9623
  • Kishore Kunal Professor of Business Analytics, Loyola Institute of Business Administration, Chennai , TamilNadu , India – 600034 https://orcid.org/0000-0003-4154-690X
  • Veeramani Ganesan Professor, Department of Management and Business Administration, Jeppiaar institute of technology, Sunguvarchatram, Sriperumbudur. Pin 631604, Tamil Nadu, India.
  • Sudhakar Ganesan Associate Professor ,Department of Computer Science and Engineering ,Sri Sai Ranganathan Engineering College Coimbatore, Tamil Nadu, India. https://orcid.org/0000-0002-1029-4888
  • Anitha Jaganathan Assistant Professor, Department of Artificial Intelligence and Data Science, Panimalar Engineering College, Poonamallee, Chennai, Tamil Nadu 600123, India https://orcid.org/0009-0002-7773-0469
  • Vairavel Madeshwaren Dhanalakshmi Srinivasan College of Engineering , Coimbatore ,Tamil Nadu ,India -641105

DOI:

https://doi.org/10.22399/ijcesen.1490

Keywords:

Convolutional Neural Network, Environment, Emoji, sentiment analyses, prediction, Financial Markets

Abstract

Textual and financial data in social media has come a long way in the present. Emojis, the primary focus of this study piece, allow emotions to be visually represented thanks to the advent of text-based digital communication. By adding visual currency attractiveness to text, emojis in digital communication enhance communication and open up new channels for innovation and exchange. The neural network model for text-based emoji entry prediction is highly optimised, however because of little knowledge in this field, it is more difficult to predict future emojis from images all the finance symbols. Emojis are a great alternative to linguistically independent, sentiment-aligned embeddings since they are consistent and convey a clear sentiment signal NSE and BSE market.  Compared to models for text, models for symbolic description have received less attention. In this study,Main  researchers employed CNN architecture for image classification together with an emoji2vec embedding into the word2vec model to predict emoji from photos apply in finance sector and finding.  Additionally, we performed a sentiment analysis on the text to forecast upcoming emoji labels added. Our approach effectively communicates how the emojis relate to one another. The length of the search for incoming image-based emoji predictions has been optimised using this model.

References

Al-Halah, Z., Aitken, A., Shi, W., & Caballero, J. (2019). Smile, be happy :) emoji embedding for visual sentiment analysis. Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 0–0.

Alam, S., & Yao, N. (2019). The impact of preprocessing steps on the accuracy of machine learning algorithms in sentiment analysis. Computational and Mathematical Organization Theory, 25(9), 319–335. https://doi.org/10.1007/s10588-018-9266-8

Arulmurugan, R., Sabarmathi, K. R., & Anandakumar, H. (2019). [Retracted article] Classification of sentence-level sentiment analysis using cloud machine learning techniques. Cluster Computing, 22(1), 1199–1209. https://doi.org/10.1007/s10586-022-03861-3

Baek, T. H., Kim, S., Yoon, S., Choi, Y. K., Choi, D., & Bang, H. (2022). Emojis and assertive environmental messages in social media campaigns. Internet Research, 32(3), 988–1002. https://doi.org/10.1108/INTR-11-2020-0638

Bai, Q., Dan, Q., Mu, Z., & Yang, M. (2019). A systematic review of emoji: Current research and future perspectives. Frontiers in Psychology, 10, 2221. https://doi.org/10.3389/fpsyg.2019.02221

Bansal, B., & Srivastava, S. (2019). Lexicon-based Twitter sentiment analysis for vote share prediction using emoji and N-gram features. International Journal of Web Based Communities, 15(1), 85–99. https://doi.org/10.1504/IJWBC.2019.098693

Barbieri, F., Ballesteros, M., Ronzano, F., & Saggion, H. (2018). Multimodal emoji prediction. arXiv Preprint. https://doi.org/10.48550/arXiv.1803.02392

Beaufays, F., Rao, K., Mathews, R., & Ramaswamy, S. (2019). Federated learning for emoji prediction in a mobile keyboard.

Beißwenger, M., & Pappert, S. (2019). How to be polite with emojis: A pragmatic analysis of face work strategies in an online learning environment. European Journal of Applied Linguistics, 7(2), 225–254. https://doi.org/10.1515/eujal-2019-0003

Cappallo, S., Mensink, T., & Snoek, C. G. (2015). Image2emoji: Zero-shot emoji prediction for visual media. Proceedings of the 23rd ACM International Conference on Multimedia, 8, 1311–1314. https://doi.org/10.1145/2733373.2806335

Cappallo, S., Svetlichnaya, S., Garrigues, P., Mensink, T., & Snoek, C. G. (2018). New modality: Emoji challenges in prediction, anticipation, and retrieval. IEEE Transactions on Multimedia, 21(2), 402–415. https://doi.org/10.1109/TMM.2018.2862363

Chatterjee, A., Gupta, U., Chinnakotla, M. K., Srikanth, R., Galley, M., & Agrawal, P. (2019a). Understanding emotions in text using deep learning and big data. Computers in Human Behavior, 93(4), 309–317. https://doi.org/10.1016/j.chb.2018.12.029

Chatterjee, A., Narahari, K. N., Joshi, M., & Agrawal, P. (2019b). SemEval-2019 task 3: EmoContext contextual emotion detection in text. Proceedings of the 13th International Workshop on Semantic Evaluation, 6, 39–48. https://doi.org/10.18653/v1/S19-2005

Chen, Z., Cao, Y., Lu, X., Mei, Q., & Liu, X. (2019a). Sentimoji: An emoji-powered learning approach for sentiment analysis in software engineering. Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 8, 841–852. https://doi.org/10.1145/3338906.3338977

Chen, Z., Shen, S., Hu, Z., Lu, X., Mei, Q., & Liu, X. (2019b). Emoji-powered representation learning for cross-lingual sentiment classification. The World Wide Web Conference, 6, 251–262. https://doi.org/10.1145/3308558.3313600

Choudhary, N., Singh, R., Rao, V. A., & Shrivastava, M. (2018). Twitter corpus of resource-scarce languages for sentiment analysis and multilingual emoji prediction. Proceedings of the 27th International Conference on Computational Linguistics, 8, 1570–1577. https://aclanthology.org/C18-1133

Coman, A. C., Zara, G., Nechaev, Y., Barlacchi, G., & Moschitti, A. (2018). Exploiting deep neural networks for tweet-based emoji prediction. International Workshop on Semantic Evaluation, 4(1).

Felbo, B., Mislove, A., Søgaard, A., Rahwan, I., & Lehmann, S. (2017). Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion, and sarcasm. arXiv Preprint, arXiv:1708.00524. https://doi.org/10.48550/arXiv.1708.00524

Field, E. (2021). Is it all just emojis and LOL: Or can social media foster environmental learning and activism? Education for Democracy 2.0: Changing Frames of Media Literacy, 6(1), 198. https://doi.org/10.1163/9789004448490_012

Fuhl, W., Bozkir, E., Hosp, B., Castner, N., Geisler, D., Santini, T. C., & Kasneci, E. (2019). Encodji: Encoding gaze data into emoji space for an amusing scanpath classification approach. Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications, 6, 1–4. https://doi.org/10.1145/3314111.3323074

Garain, A. (2019). Humor analysis based on human annotation (HAHA)-2019: Humor analysis at tweet level using deep learning. IberLEF@SEPLN, 191–196.

Gertner, A. S., Henderson, J., Merkhofer, E., Marsh, A., Wellner, B., & Zarrella, G. (2019). MITRE at SemEval-2019 Task 5: Transfer learning for multilingual hate speech detection. Proceedings of the 13th International Workshop on Semantic Evaluation, 6, 453–459. http://dx.doi.org/10.18653/v1/S19-2080

Ghaban, W. (2022). Do we speak the same language? The effect of emojis on learners in an online learning environment. International Conference on Human-Computer Interaction, 6, 414–426.

Golazizian, P., Sabeti, B., Asli, S. A. A., Majdabadi, Z., Momenzadeh, O., & Fahmi, R. (2020). Irony detection in Persian language: A transfer learning approach using emoji prediction. Proceedings of the Twelfth Language Resources and Evaluation Conference, 5, 2839–2845. https://aclanthology.org/2020.lrec-1.346

Guibon, G., Ochs, M., & Bellot, P. (2018). From emoji usage to categorical emoji prediction. In International Conference on Computational Linguistics and Intelligent Text Processing (Vol. 13397, pp. 329–338). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-23804-8_26

Gupta, A., Bhatia, B., Chugh, D., Himabindu, G. S., Sethia, D., Agarwal, E., Sani, D., & Garg, S. (2021). Context-aware emoji prediction using deep learning. In International Conference on Artificial Intelligence and Speech Technology, 11, 244–254. https://doi.org/10.1007/978-3-030-95711-7_22

Himabindu, G. S. N., Rao, R., & Sethia, D. (2022). A self-attention hybrid emoji prediction model for code-mixed language (Hinglish). Social Network Analysis and Mining, 12(1), 137. https://doi.org/10.1007/s13278-022-00961-1

Ibrohim, M. O., Setiadi, M. A., & Budi, I. (2019). Identification of hate speech and abusive language on Indonesian Twitter using Word2vec, part of speech, and emoji features. Proceedings of the 1st International Conference on Advanced Information Science and System, 11, 1–5. https://doi.org/10.1145/3373477.3373495

Illendula, A., & Sheth, A. (2019). Multimodal emotion classification. Companion Proceedings of the 2019 World Wide Web Conference, 5, 439–449. https://doi.org/10.1145/3308560.3316549

Inan, E. (2020). An active learning-based emoji prediction method in Turkish. International Journal of Intelligent Systems and Applications in Engineering, 8(1), 1–5. https://doi.org/10.18201/ijisae.2020158882

Jabreel, M., & Moreno, A. (2019). A deep learning-based approach for multi-label emotion classification in tweets. Applied Sciences, 9(6), 1123. https://doi.org/10.3390/app9061123

Jain, A., & Jain, V. (2019). Sentiment classification of Twitter data belonging to renewable energy using machine learning. Journal of Information and Optimization Sciences, 40(2), 521–533. https://doi.org/10.1080/02522667.2019.1582873

Jaques, N., Ghandeharioun, A., Shen, J. H., Ferguson, C., Lapedriza, A., Jones, N., & Picard, R. (2019). Way off-policy batch deep reinforcement learning of implicit human preferences in dialog. arXiv Preprint, arXiv:1907.00456. https://doi.org/10.48550/arXiv.1907.00456

Jiang, H., Guo, A., & Ma, J. (2020). Automatic prediction and insertion of multiple emojis in social media text. In 2020 International Conferences on Internet of Things (iThings), IEEE Green Computing and Communications (GreenCom), IEEE Cyber, Physical and Social Computing (CPSCom), IEEE Smart Data (SmartData), and IEEE Congress on Cybermatics (Cybermatics) (Vol. 11, pp. 505–512). IEEE.

Jin, S., & Pedersen, T. (2018). Duluth UROP at SemEval-2018 Task 2: Multilingual emoji prediction with ensemble learning and oversampling. arXiv Preprint, arXiv:1805.10267. https://doi.org/10.48550/arXiv.1805.10267

Kapočiūtė-Dzikienė, J., Damaševičius, R., & Woźniak, M. (2019). Sentiment analysis of Lithuanian texts using traditional and deep learning approaches. Computers, 8(1), 4. https://doi.org/10.3390/computers8010004

Kim, J., Gong, T., Kim, B., Park, J., Kim, W., Huang, E., Han, K., Kim, J., Ko, J., & Lee, S. J. (2020). No more one-liners: Bringing context into emoji recommendations. ACM Transactions on Social Computing, 3(2), 1–25. https://doi.org/10.1145/3373146

Kim, Y., & Jun, J. W. (2020). Factors affecting sustainable purchase intentions of SNS emojis: Modeling the impact of self-presentation. Sustainability, 12(20), 8361. https://doi.org/10.3390/su12208361

Koch, T. K., Romero, P., & Stachl, C. (2022). Age and gender in language, emoji, and emoticon usage in instant messages. Computers in Human Behavior, 126, 106990. https://doi.org/10.1016/j.chb.2021.106990

Kolla, V., & Kiran, R. (2021). Emojify: A deep learning approach for custom emoji creation and recognition. International Journal of Creative Research Thoughts, 9(1), 4859–4866. https://ssrn.com/abstract=4413719

Kollipara, V. D. P., Kollipara, V. H., & Prakash, M. D. (2021). Emoji prediction from Twitter data using a deep learning approach. Asian Conference on Innovation in Technology (ASIANCON), 8, 1–6. https://doi.org/10.1109/ASIANCON51346.2021.9544680

Kumar, A., & Garg, G. (2023). Empirical study of shallow and deep learning models for sarcasm detection using context in benchmark datasets. Journal of Ambient Intelligence and Humanized Computing, 14(5), 5327–5342. https://doi.org/10.1007/s12652-019-01419-7

Kunte, A. V., & Panicker, S. (2019). Using textual data for personality prediction: A machine learning approach. 2019 4th International Conference on Information Systems and Computer Networks (ISCON), 11, 529–533. https://doi.org/10.1109/ISCON47742.2019.9036220

Lavanya, K., Devi, C. L., Sree, M. D., & Shareef, P. N. (2021). Predicting emotions based on emojis and speech using machine learning techniques. International Journal of Creative Research Thoughts, 8(6), 552–557.

Lee, S., Jeong, D., & Park, E. (2022). MultiEmo: Multi-task framework for emoji prediction. Knowledge-Based Systems, 242, 108437. https://doi.org/10.1016/j.knosys.2022.108437

Li, D., Rzepka, R., Ptaszynski, M., & Araki, K. (2019). A novel machine learning-based sentiment analysis method for Chinese social media considering Chinese slang lexicon and emoticons. AffCon@AAAI, 1, 2328.

Li, D., Rzepka, R., Ptaszynski, M., & Araki, K. (2020). HEMOS: A novel deep learning-based fine-grained humor detecting method for sentiment analysis of social media. Information Processing & Management, 57(6), 102290. https://doi.org/10.1016/j.ipm.2020.102290

Li, W., Chen, Y., Hu, T., & Luo, J. (2018). Mining the relationship between emoji usage patterns and personality. Proceedings of the International AAAI Conference on Web and Social Media, 12(1), 648–651. https://doi.org/10.1609/icwsm.v12i1.15054

Li, X., Zhang, J., Du, Y., Zhu, J., Fan, Y., & Chen, X. (2023). A novel deep learning-based sentiment analysis method enhanced with emojis in microblog social networks. Enterprise Information Systems, 17(5), 2037160. https://doi.org/10.1080/17517575.2022.2037160

Liebeskind, C., & Liebeskind, S. (2019). Emoji prediction for Hebrew political domain. Companion Proceedings of the 2019 World Wide Web Conference, 5, 468–477. https://doi.org/10.1145/3308560.3316548

Liu, L., Priestley, J. L., Zhou, Y., Ray, H. E., & Han, M. (2019). A2text-net: A novel deep neural network for sarcasm detection. 2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI), 12, 118–126. https://doi.org/10.1109/CogMI48466.2019.00025

López-Santamaría, L. M., Gomez, J. C., Almanza-Ojeda, D. L., & Ibarra-Manzano, M. A. (2019). Age and gender identification in unbalanced social media. 2019 International Conference on Electronics, Communications and Computers (CONIELECOMP), 12, 74–80. https://doi.org/10.1109/CONIELECOMP.2019.8673125

Ma, W., Liu, R., Wang, L., et al. (2020). Emoji prediction: Extensions and benchmarking. arXiv preprint arXiv:2007.07389. https://doi.org/10.48550/arXiv.2007.07389

Meenigea, N. (2019). Emojify—Create your own emojis with deep learning. International Journal of Sustainable Development in Computing Science, 1(1), 31–39.

Nerellapalli, V. (2019). Sentimental analysis—Emoji prediction. International Journal of Emerging Technologies and Innovation Research Literature.

Peng, D., & Zhao, H. (2021). Seq2Emoji: A hybrid sequence generation model for short text emoji prediction. Knowledge-Based Systems, 214, 106727. https://doi.org/10.1016/j.knosys.2020.106727

Peng, S., Cao, L., Zhou, Y., Ouyang, Z., Yang, A., Li, X., & Yu, S. (2022). A survey on deep learning for textual emotion analysis in social networks. Digital Communications and Networks, 8(5), 745–762. https://doi.org/10.1016/j.dcan.2021.10.003

Pinto, J., Priya, V., & Murari. (2019). Real-time sentiment analysis of political Twitter data using a machine learning approach. International Research Journal of Engineering and Technology (IRJET), 6(4), 4124–4129.

Priya, B., & Gnana. (2019). Emoji-based sentiment analysis using KNN. International Journal of Scientific Research and Review, 7(4), 859–865.

Raj, H., Wilfred, S., & Balachandran. (2020). Future emoji entry prediction using neural networks. Journal of Computer Science, 16(2), 150–157. https://doi.org/10.3844/jcssp.2020.150.157

Ramaswamy, S., Mathews, R., Rao, K., & Beaufays, F. (2019). Federated learning for emoji prediction in a mobile keyboard. arXiv preprint arXiv:1906.04329. https://doi.org/10.48550/arXiv.1906.04329

Ranjan, R., & Yadav, P. (2021). Emoji prediction using LSTM and Naive Bayes. TENCON 2021-2021 IEEE Region 10 Conference (TENCON), 12, 284–288. https://doi.org/10.1109/TENCON54134.2021.9707344

Rebiai, Z., Andersen, S., Debrenne, A., & Lafargue, V. (2019). SCIA at SemEval-2019 task 3: Sentiment analysis in textual conversations using deep learning. Proceedings of the 13th International Workshop on Semantic Evaluation, 6, 297–301. https://doi.org/10.18653/v1/S19-2051

Ronzano, F., Barbieri, F., Wahyu Pamungkas, E., Patti, V., & Chiusaroli, F. (2018). Overview of the Evalita 2018 Italian emoji prediction (ITAMoji) task. CEUR Workshop Proceedings, 2263, 1–9. http://ceur-ws.org/Vol-2263/paper004.pdf

Saha, S., & Kumar, K. A. (2022). Emoji prediction using emerging machine learning classifiers for text-based communication. Journal of Mathematical Sciences & Computing, 1, 37–43. https://doi.org/10.5815/ijmsc.2022.01.04

Santamaría-Bonfil, G., & López, O. G. T. (2019). Emoji as a proxy of emotional communication. Becoming Human with Humanoid—From Physical Interaction to Social Intelligence. IntechOpen. https://doi.org/10.5772/intechopen.73377

Shardlow, M., Gerber, L., & Nawaz, R. (2022). One emoji, many meanings: A corpus for the prediction and disambiguation of emoji sense. Expert Systems with Applications, 198(7), 116862. https://doi.org/10.1016/j.eswa.2022.116862

Subramanian, J., Sridharan, V., Shu, K., & Liu, H. (2019). Exploiting emojis for sarcasm detection. Social, Cultural, and Behavioral Modeling: 12th International Conference, 70–80. Springer International Publishing.

Tavan, E., Rahmati, A., & Keyvanrad, M. A. (2020). Persian emoji prediction using deep learning and emoji embedding. 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE), 10, 350–355. https://doi.org/10.1109/ICCKE50421.2020.9303639

Tomihira, T., Otsuka, A., Yamashita, A., & Satoh, T. (2018). What does your tweet emotion mean? Neural emoji prediction for sentiment analysis. Proceedings of the 20th International Conference on Information Integration and Web-Based Applications & Services, 11, 289–296. https://doi.org/10.1145/3282373.3282406

Tomihira, T., Otsuka, A., Yamashita, A., & Satoh, T. (2020a). Multilingual emoji prediction using BERT for sentiment analysis. International Journal of Web Information Systems, 16(3), 265–280. https://doi.org/10.1108/IJWIS-09-2019-0042

Tomihira, T., Otsuka, A., Yamashita, A., & Satoh, T. (2020b). Multilingual emoji prediction using BERT for sentiment analysis. International Journal of Web Information Systems, 16(3), 265–280. https://doi.org/10.1108/IJWIS-09-2019-0042

Venkit, P., Karishma, Z., Hsu, C. Y., Katiki, R., Huang, K., Wilson, S., & Dudas, P. (2021). A ‘Sourceful’ twist: Emoji prediction based on sentiment, hashtags and application source. arXiv preprint arXiv:2103.07833. https://doi.org/10.48550/arXiv.2103.07833

Wijeratne, S., Saggion, H., Kiciman, E., & Sheth, A. P. (2020). Emoji understanding and applications in social media: Lay of the land and special issue introduction. ACM Transactions on Social Computing, 3(2), 1–5. https://doi.org/10.1145/3386120

Winata, G. I., Madotto, A., Lin, Z., Shin, J., Xu, Y., Xu, P., & Fung, P. (2019). CAiRE HKUST at SemEval-2019 task 3: Hierarchical attention for dialogue emotion classification. arXiv preprint arXiv:1906.04041. https://doi.org/10.48550/arXiv.1906.04041

Xiao, J. (2019). Figure eight at SemEval-2019 task 3: Ensemble of transfer learning methods for contextual emotion detection. Proceedings of the 13th International Workshop on Semantic Evaluation, 6, 220–224. https://doi.org/10.18653/v1/S19-2036

Xing, W., & Du, D. (2019). Dropout prediction in MOOCs: Using deep learning for personalized intervention. Journal of Educational Computing Research, 57(3), 547–570. https://doi.org/10.1177/0735633118757015

Xu, M., Liu, J., Liu, Y., Lin, F. X., Liu, Y., & Liu, X. (2019). A first look at deep learning apps on smartphones. The World Wide Web Conference, 6, 2125–2136. https://doi.org/10.1145/3308558.3313591

Zhang, L., Zhou, Y., Erekhinskaya, T., & Moldovan, D. (2020). Emoji prediction: A transfer learning approach. Advances in Information and Communication: Proceedings of the 2020 Future of Information and Communication Conference (FICC), 2, 864–872. https://doi.org/10.1007/978-3-030-39442-4_65

Zhao, L., & Zeng, C. (2017). Using neural networks to predict emoji usage from Twitter data. Semantic Scholar, 1–6.

Zhao, P., Jia, J., An, Y., Liang, J., Xie, L., & Luo, J. (2018). Analyzing and predicting emoji usages in social media. Companion Proceedings of the The Web Conference, 4, 327–334. https://doi.org/10.1145/3184558.3186344

Zhu, J., Tian, Z., & Kübler, S. (2019). UM-IU@LING at SemEval-2019 task 6: Identifying offensive tweets using BERT and SVMs. arXiv preprint arXiv:1904.03450. https://doi.org/10.48550/arXiv.1904.03450

Pradeepa, K., Bharathiraja, N., Meenakshi, D., Hariharan, S., Kathiravan, M., & Kumar, V. (2022). Artificial neural networks in healthcare for augmented reality. In 2022 Fourth International Conference on Cognitive Computing and Information Processing (CCIP), 1–5. https://doi.org/10.1109/CCIP57447.2022.10058670

Kathiravan, M., Ramya, M., Jayanthi, S., Reddy, V. V., Ponguru, L., & Bharathiraja, N. (2023). Predicting the sale price of pre-owned vehicles with the ensemble ML model. In 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC), 1793–1797. https://doi.org/10.1109/ICESC57686.2023.10192988

Bhaskaran, S., Hariharan, S., Veeramanickam, M. R., Bharathiraja, N., Pradeepa, K., & Marappan, R. (2022). Recommendation system using inference-based graph learning–modeling and analysis. In 2022 2nd International Conference on Innovative Sustainable Computational Technologies (CISCT), 1–5. https://doi.org/10.1109/CISCT55310.2022.10046447

Anand, M., Antonidoss, A., Balamanigandan, R., Rahmath Nisha, S., Gurunathan, K., & Bharathiraja, N. (2022). Resourceful routing algorithm for mobile ad-hoc network to enhance energy utilization. Wireless Personal Communications, 127(Suppl 1), 7–8. https://doi.org/10.1007/s11277-021-08570-5

Menaka, S., Harshika, J., Philip, S., John, R., Bharathiraja, N., & Murugesan, S. (2023). Analysing the accuracy of detecting phishing websites using ensemble methods in machine learning. In 2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS), 1251–1256. https://doi.org/10.1109/ICAIS56108.2023.10073834

Shyni Carmel Mary, S., Kishore Kunal, & Madeshwaren, V. (2025). IoT and Blockchain in Supply Chain Management for Advancing Sustainability and Operational Optimization. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1103

Downloads

Published

2025-04-13

How to Cite

PC Lakshmi Narayanan, Kishore Kunal, Veeramani Ganesan, Sudhakar Ganesan, Anitha Jaganathan, & Madeshwaren, V. (2025). A Review on Emoji Entry Prediction for Future Finance Market Analysis Using Convolutional Neural Network. International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.1490

Issue

Section

Review Article