Intelligent Edge Computing: AI-Powered Optimization for Smart IoT System
DOI:
https://doi.org/10.22399/ijcesen.1529Keywords:
Edge Computing, IoT, Artificial Intelligence, Deep Reinforcement learning, Federated Learning, Real-Time OptimizationAbstract
In the era of rapidly evolving Internet of Things (IoT) ecosystems, the convergence of Artificial Intelligence (AI) with Edge Computing has emerged as a transformative paradigm to meet the stringent requirements of low latency, reduced bandwidth usage, and enhanced data privacy. This study presents an Intelligent Edge Computing (IEC) framework powered by AI-based optimization techniques designed specifically for smart IoT systems operating in real-time environments. The proposed system utilizes lightweight Deep Reinforcement Learning (DRL) for dynamic task offloading and scheduling, and a Swarm Intelligence-based Resource Allocation (SIRA) algorithm to optimize energy consumption and computational load across edge nodes. Additionally, the system leverages Federated Learning (FL) for decentralized model training while maintaining data security and minimizing transmission overhead.
Experimental evaluations conducted using the iFogSim simulator across smart home, industrial automation, and healthcare monitoring scenarios demonstrate the effectiveness of the IEC framework. Key results include a 32.8% reduction in average task latency, 27.4% improvement in energy efficiency, and 22.5% increase in task success rate compared to traditional cloud-based architectures. The IEC framework also achieved 94.6% model accuracy using FL with minimal privacy leakage.
These results affirm that AI-powered edge optimization can significantly enhance the performance and scalability of smart IoT systems while ensuring sustainable and secure operations..
References
Satyanarayanan, M. (2017). The emergence of edge computing. Computer. 50(1);30-39. https://doi.org/10.1109/mc.2017.9 DOI: https://doi.org/10.1109/MC.2017.9
Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal. 3(5);637-646. https://doi.org/10.1109/jiot.2016.2579198 DOI: https://doi.org/10.1109/JIOT.2016.2579198
Abbas, N., Zhang, Y., Taherkordi, A., & Skeie, T. (2018). Mobile edge computing: A survey. IEEE Internet of Things Journal. 5(1);450-465. https://doi.org/10.1109/jiot.2017.2750180 DOI: https://doi.org/10.1109/JIOT.2017.2750180
Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., & Sabella, D. (2017). On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Communications Surveys & Tutorials. 19(3);1657-1681. https://doi.org/10.1109/comst.2017.2705720 DOI: https://doi.org/10.1109/COMST.2017.2705720
Zhang, K., Mao, Y., Leng, S., He, Y., & Zhang, Y. (2016). Mobile-edge computing for vehicular networks: A promising network paradigm with predictive off-loading. IEEE Vehicular Technology Magazine. 12(2);36-44. https://doi.org/10.1109/mvt.2017.2668838 DOI: https://doi.org/10.1109/MVT.2017.2668838
Deng, R., Lu, R., Lai, C., Luan, T. H., & Liang, H. (2016). Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet of Things Journal. 3(6);1171-1181. https://doi.org/10.1109/jiot.2016.2565516 DOI: https://doi.org/10.1109/JIOT.2016.2565516
Yang, Z., Sun, Y., Liu, H., & Song, H. (2020). Federated learning for intelligent IoT via wireless networks: A tutorial. IEEE Communications Surveys & Tutorials. 23(2);1093-1121.
Li, X., Jiang, M., Zhang, X., & Zhao, L. (2019). A federated learning based privacy-preserving strategy for industrial AI. IEEE Transactions on Industrial Informatics. 16(6);4177-4186. DOI: https://doi.org/10.1109/TII.2019.2942190
Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., & Wang, W. (2019). A survey on mobile edge networks: Convergence of computing, caching and communications. IEEE Access. 5;6757-6779. https://doi.org/10.1109/access.2017.2685434 DOI: https://doi.org/10.1109/ACCESS.2017.2685434
Hossain, M. S., & Muhammad, G. (2019). Cloud-assisted industrial internet of things (IIoT)–enabled framework for health monitoring. Computer Networks. 101(1);192-202. https://doi.org/10.1016/j.comnet.2016.01.009 DOI: https://doi.org/10.1016/j.comnet.2016.01.009
Janarthanan, R., Maheshwari, R.U., Shukla, P.K., Shukla, P.K., Mirjalili, S., & Kumar, M. (2021). Intelligent Detection of the PV Faults Based on Artificial Neural Network and Type 2 Fuzzy Systems. Energies. 14;6584. https://doi.org/10.3390/en14206584 DOI: https://doi.org/10.3390/en14206584
Maheshwari, R.U., Kumarganesh, S., K V M, S. et al. (2024). Advanced Plasmonic Resonance-enhanced Biosensor for Comprehensive Real-time Detection and Analysis of Deepfake Content. Plasmonics. https://doi.org/10.1007/s11468-024-02407-0 DOI: https://doi.org/10.1007/s11468-024-02407-0
Appalaraju, M., Sivaraman, A.K., Vincent, R., Ilakiyaselvan, N., Rajesh, M., & Maheshwari, U. (2022). Machine Learning-Based Categorization of Brain Tumor Using Image Processing. In: Raje, R.R., Hussain, F., Kannan, R.J. (eds) Artificial Intelligence and Technologies. Lecture Notes in Electrical Engineering. 806. Springer, Singapore. https://doi.org/10.1007/978-981-16-6448-9_24 DOI: https://doi.org/10.1007/978-981-16-6448-9_24
Maheshwari, R.U., B.Paulchamy, Pandey, B.K. et al. (2024). Enhancing Sensing and Imaging Capabilities Through Surface Plasmon Resonance for Deepfake Image Detection. Plasmonics. https://doi.org/10.1007/s11468-024-02492-1 DOI: https://doi.org/10.1007/s11468-024-02492-1
Maheshwari, Uma, & Silingam, Kalpanaka. (2020). Multimodal Image Fusion in Biometric Authentication. Fusion: Practice and Applications. 1(2);79-91. https://doi.org/10.54216/fpa.010203 DOI: https://doi.org/10.54216/FPA.010203
S. S, S. S and U. M. R. (2022). Soft Computing based Brain Tumor Categorization with Machine Learning Techniques. International Conference on Advanced Computing Technologies and Applications (ICACTA). 1-9. https://doi.org/10.1109/ICACTA54488.2022.9752880 DOI: https://doi.org/10.1109/ICACTA54488.2022.9752880
Maheshwari, R. Uma, Paulchamy, B., Arun M, Selvaraj, Vairaprakash, Saranya, N. Naga, & Ganesh, Sankar S. (2024). Deepfake Detection using Integrate-backward-integrate Logic Optimization Algorithm with CNN. IJEER. 12(2);696-710. https://doi.org/10.37391/IJEER.120248 DOI: https://doi.org/10.37391/ijeer.120248
Rajendran, U. M., & Paulchamy, J. (2021). Analysis and classification of gait characteristics. Iconic Research and Engineering Journals. 4(12);95-98. https://www.irejournals.com/formatedpaper/1702779.pdf
Paulchamy, B., Chidambaram, S., Jaya, J., & Maheshwari, R. U. (2021). Diagnosis of Retinal Disease Using Retinal Blood Vessel Extraction. International Conference on Mobile Computing and Sustainable Informatics. 343–359. https://doi.org/10.1007/978-3-030-49795-8_34 DOI: https://doi.org/10.1007/978-3-030-49795-8_34
Paulchamy, B., Uma Maheshwari, R., Sudarvizhi AP, D., Anandkumar AP, R., & Ravi, G. (2023). Optimized Feature Selection Techniques for Classifying Electrocorticography Signals. Brain‐Computer Interface: Using Deep Learning Applications. 255-278. https://doi.org/10.1002/9781119857655.ch11 DOI: https://doi.org/10.1002/9781119857655.ch11
Hafez, I. Y., & El-Mageed, A. A. A. (2025). Enhancing Digital Finance Security: AI-Based Approaches for Credit Card and Cryptocurrency Fraud Detection. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.21 DOI: https://doi.org/10.22399/ijasrar.21
G. Prabaharan, S. Vidhya, T. Chithrakumar, K. Sika, & M.Balakrishnan. (2025). AI-Driven Computational Frameworks: Advancing Edge Intelligence and Smart Systems. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1165 DOI: https://doi.org/10.22399/ijcesen.1165
Serap ÇATLI DİNÇ, AKMANSU, M., BORA, H., ÜÇGÜL, A., ÇETİN, B. E., ERPOLAT, P., … ŞENTÜRK, E. (2024). Evaluation of a Clinical Acceptability of Deep Learning-Based Autocontouring: An Example of The Use of Artificial Intelligence in Prostate Radiotherapy. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.386 DOI: https://doi.org/10.22399/ijcesen.386
S. Esakkiammal, & K. Kasturi. (2024). Advancing Educational Outcomes with Artificial Intelligence: Challenges, Opportunities, And Future Directions. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.799 DOI: https://doi.org/10.22399/ijcesen.799
Fowowe, O. O., & Agboluaje, R. (2025). Leveraging Predictive Analytics for Customer Churn: A Cross-Industry Approach in the US Market. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.20 DOI: https://doi.org/10.22399/ijasrar.20
S. Menaka, & V. Selvam. (2025). Bibliometric Analysis of Artificial Intelligence on Consumer Purchase Intention in E-Retailing. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1007 DOI: https://doi.org/10.22399/ijcesen.1007
ZHANG, J. (2025). Artificial intelligence contributes to the creative transformation and innovative development of traditional Chinese culture. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.860 DOI: https://doi.org/10.22399/ijcesen.860
M.K. Sarjas, & G. Velmurugan. (2025). Bibliometric Insight into Artificial Intelligence Application in Investment. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.864 DOI: https://doi.org/10.22399/ijcesen.864
Ibeh, C. V., & Adegbola, A. (2025). AI and Machine Learning for Sustainable Energy: Predictive Modelling, Optimization and Socioeconomic Impact In The USA. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.19 DOI: https://doi.org/10.22399/ijasrar.19
Bandla Raghuramaiah, & Suresh Chittineni. (2025). BreastHybridNet: A Hybrid Deep Learning Framework for Breast Cancer Diagnosis Using Mammogram Images. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.812 DOI: https://doi.org/10.22399/ijcesen.812
Robert, N. R., A. Cecil Donald, & K. Suresh. (2025). Artificial Intelligence Technique Based Effective Disaster Recovery Framework to Provide Longer Time Connectivity in Mobile Ad-hoc Networks. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.713 DOI: https://doi.org/10.22399/ijcesen.713
Olola, T. M., & Olatunde, T. I. (2025). Artificial Intelligence in Financial and Supply Chain Optimization: Predictive Analytics for Business Growth and Market Stability in The USA. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.18 DOI: https://doi.org/10.22399/ijasrar.18
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.