Unlocking Rotavirus Defense: Predicting B Cell Epitopes Targets for Human Rotavirus Type A Vaccines
DOI:
https://doi.org/10.22399/ijcesen.2287Keywords:
Rotavirus, vaccine design, in-silico methods, epitope prediction, immunoinformatics, immunogenicity predictionAbstract
Rotavirus, an exceptionally contagious viral agent, holds the distinction of being the primary causal factor behind acute infectious diarrhea in the pediatric demographic under the age of five, thus constituting a profound menace that transcends geographical boundaries. Despite commendable strides in the realm of vaccine development, the terrain of vaccine design and efficacy continues to be rife with challenges. Within the ambit of this investigation, we undertake an exploration of an in-silico avenue for the formulation of rotavirus vaccines, thereby embarking upon a probing analysis of prospective vaccine candidates. The protein sequence of Human Rotavirus Type A was obtained from the UniProt database, and BepiPred 3.0 and ABCpred tools were employed for epitope predictions. Additionally, the secondary structure of RNA molecules for the Human Rotavirus Type A vaccine design was analyzed by utilizing the predictive capabilities of the RNAfold Server. The Class I MHC Immunogenicity and SVMTriP programs were used to predict immunogenicity, while Vaxijen 2.0 was employed to forecast immune properties. According to the results obtained from our study, the CGATGTTGTTGATGGT sequence exhibits epitope potential. This study has provided insights into the analysis of the secondary structure of RNA molecules for the design of Human Rotavirus Type A vaccines, enabling the identification of potential immunogenic regions that could serve as targets for vaccine candidates.
References
[1] Parashar, U. D., Hummelman, E. G., Bresee, J. S., Miller, M. A., & Glass, R. I. (2003). Global illness and deaths caused by rotavirus disease in children. Emerging infectious diseases, 9(5), 565–572. https://doi.org/10.3201/eid0905.020562
[2] Girish Kumar, C. P., Giri, S., Chawla-Sarkar, M., Gopalkrishna, V., Chitambar, S. D., Ray, P., et al. (2020). Epidemiology of rotavirus diarrhea among children less than 5 years hospitalized with acute gastroenteritis prior to rotavirus vaccine introduction in India. Vaccine, 38(51), 8154–8160. https://doi.org/10.1016/j.vaccine.2020.10.084
[3] Chissaque, A., Cassocera, M., Gasparinho, C., Langa, J. S., Bauhofer, A. F. L., Chilaúle, J. J et al. (2021). Rotavirus A infection in children under five years old with a double health problem: undernutrition and diarrhoea - a cross-sectional study in four provinces of Mozambique. BMC infectious diseases, 21(1), 18. https://doi.org/10.1186/s12879-020-05718-9
[4] Gbebangi-Manzemu, D., Kampunzu, V. M., Vanzwa, H. M., Mumbere, M., Bukaka, G. M., Likele, B. B. et al. (2023). Clinical profile of children under 5 years of age with rotavirus diarrhoea in a hospital setting in Kisangani, DRC, after the introduction of the rotavirus vaccine, a cross-sectional study. BMC pediatrics, 23(1), 193. https://doi.org/10.1186/s12887-023-04022-0
[5] Murphy, A., Kirby, A., & De Blasio, F. (2023). The economic impact of the introduction of universal rotavirus vaccination on rotavirus gastroenteritis related hospitalisations in children in Ireland. Vaccine, 41(16), 2656–2663. https://doi.org/10.1016/j.vaccine.2023.03.010
[6] Bresee, J. S., Parashar, U. D., Widdowson, M. A., Gentsch, J. R., Steele, A. D., & Glass, R. I. (2005). Update on rotavirus vaccines. The Pediatric infectious disease journal, 24(11), 947–952. https://doi.org/10.1097/01.inf.0000186295.18969.e6
[7] Glass, R. I., Kilgore, P. E., Holman, R. C., Jin, S., Smith, J. C., Woods, P. A. et al.(1996). The epidemiology of rotavirus diarrhea in the United States: surveillance and estimates of disease burden. The Journal of infectious diseases, 174 Suppl 1, S5–S11. https://doi.org/10.1093/infdis/174.supplement_1.s5
[8] Velázquez, F. R., Matson, D. O., Calva, J. J., Guerrero, L., Morrow, A. L., Carter-Campbell, S., et al. (1996). Rotavirus infection in infants as protection against subsequent infections. The New England journal of medicine, 335(14), 1022–1028. https://doi.org/10.1056/NEJM199610033351404
[9] Rappuoli, R., Pizza, M., Covacci, A., Bartoloni, A., Nencioni, L., Podda, A., & De Magistris, M. T. (1992). Recombinant acellular pertussis vaccine--from the laboratory to the clinic: improving the quality of the immune response. FEMS microbiology immunology, 5(4), 161–170. https://doi.org/10.1111/j.1574-6968.1992.tb05898.x
[10] Rotavirus vaccines WHO position paper: January 2013 - Recommendations. (2013). Vaccine, 31(52), 6170–6171. https://doi.org/10.1016/j.vaccine.2013.05.037
[11] Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic acids research, 45(W1), W24–W29. https://doi.org/10.1093/nar/gkx346
[12] Malik, A. A., Ojha, S. C., Schaduangrat, N., & Nantasenamat, C. (2022). ABCpred: a webserver for the discovery of acetyl- and butyryl-cholinesterase inhibitors. Molecular diversity, 26(1), 467–487. https://doi.org/10.1007/s11030-021-10292-6
[13] Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R., & Hofacker, I. L. (2008). The Vienna RNA websuite. Nucleic acids research, 36(Web Server issue), W70–W74. https://doi.org/10.1093/nar/gkn188
[14] Tung, C. W., & Ho, S. Y. (2007). POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties. Bioinformatics (Oxford, England), 23(8), 942–949. https://doi.org/10.1093/bioinformatics/btm061
[15] Yao, B., Zhang, L., Liang, S., & Zhang, C. (2012). SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PloS one, 7(9), e45152. https://doi.org/10.1371/journal.pone.0045152
[16] Albert, M. J., & Bishop, R. F. (1984). Cultivation of human rotaviruses in cell culture. Journal of medical virology, 13(4), 377–383. https://doi.org/10.1002/jmv.1890130409
[17] Burke, R. M., Tate, J. E., Kirkwood, C. D., Steele, A. D., & Parashar, U. D. (2019). Current and new rotavirus vaccines. Current opinion in infectious diseases, 32(5), 435–444. https://doi.org/10.1097/QCO.0000000000000572
[18] Ndwandwe, D., Runeyi, S., Mathebula, L., & Wiysonge, C. (2022). Rotavirus vaccine clinical trials: a cross-sectional analysis of clinical trials registries. Trials, 23(1), 945. https://doi.org/10.1186/s13063-022-06878-6
[19] Saba, A. A., Adiba, M., Saha, P., Hosen, M. I., Chakraborty, S., & Nabi, A. H. M. N. (2021). An in-depth in silico and immunoinformatics approach for designing a potential multi-epitope construct for the effective development of vaccine to combat against SARS-CoV-2 encompassing variants of concern and interest. Computers in biology and medicine, 136, 104703. https://doi.org/10.1016/j.compbiomed.2021.104703
[20] Usman, M., Ayub, A., Habib, S., Rana, M. S., Rehman, Z., Zohaib, A., Jamal, S. B., Jaiswal, A. K., Andrade, B. S., de Carvalho Azevedo, V., Faheem, M., & Javed, A. (2023). Vaccinomics Approach for Multi-Epitope Vaccine Design against Group A Rotavirus Using VP4 and VP7 Proteins. Vaccines, 11(4), 726. https://doi.org/10.3390/vaccines11040726
[21] Dennehy P. H. (2008). Rotavirus vaccines: an overview. Clinical microbiology reviews, 21(1), 198–208. https://doi.org/10.1128/CMR.00029-07
[22] Burnett, E., Jonesteller, C. L., Tate, J. E., Yen, C., & Parashar, U. D. (2017). Global Impact of Rotavirus Vaccination on Childhood Hospitalizations and Mortality From Diarrhea. The Journal of infectious diseases, 215(11), 1666–1672. https://doi.org/10.1093/infdis/jix186
[23] Keating G. M. (2006). Rotavirus vaccine (RotaTeq). Paediatric drugs, 8(3), 197–204. https://doi.org/10.2165/00148581-200608030-00008
[24] Buyse, H., Vinals, C., Karkada, N., & Han, H. H. (2014). The human rotavirus vaccine Rotarix™ in infants: an integrated analysis of safety and reactogenicity. Human vaccines & immunotherapeutics, 10(1), 19–24. https://doi.org/10.4161/hv.26476
[25] Pishesha, N., Harmand, T. J., & Ploegh, H. L. (2022). A guide to antigen processing and presentation. Nature reviews. Immunology, 22(12), 751–764. https://doi.org/10.1038/s41577-022-00707-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.