Genetic Insights into Cervical Cancer: In silico approach

Authors

  • Duygu Kırkık Department of Immunology, Hamidiye Medicine Faculty, University of Health Sciences, Istanbul, Turkiye https://orcid.org/0000-0003-1417-6915
  • Gürkan Özbey Department of Obstetrics and Gynecology, Faculty of Medicine, Adıyaman University, Adıyaman, Turkiye

DOI:

https://doi.org/10.22399/ijcesen.969

Keywords:

bioinformatics, in silico, cervix cancer, TP53, MDM2

Abstract

Cervical cancer is a major global health burden, particularly in developing regions where it remains a leading cause of cancer-related deaths among women. While high-risk human papillomavirus (HPV) types are the primary etiological agents, host genetic factors and their interplay with viral mechanisms significantly influence cervical cancer susceptibility and progression. This study focuses on the genetic contributions of RPL11, TP63, and CDKN2A, key genes involved in cell cycle regulation, apoptosis, and DNA repair.We performed an in silico analysis using advanced computational tools to identify and characterize missense single nucleotide polymorphisms (SNPs) in these genes. Protein-protein interaction networks were constructed using STRING and GeneMANIA databases, and disease associations were evaluated using the DISEASES and KEGG pathway databases. Our findings identified significant polymorphisms, such as rs1042522 in TP53, encoding the P72R variant, and rs769412 in CDKN2A, which may modulate cellular responses to HPV oncoproteins, contributing to tumorigenesis. RPL11 was shown to stabilize TP53 through MDM2 inhibition, underscoring its role in tumor suppression, while TP63 was associated with epithelial differentiation and HPV-related infections.These genetic variations may also play a role in HPV-negative cervical cancers, which exhibit distinct molecular profiles. The study highlights the importance of exploring genetic predispositions in cervical cancer to better understand its pathogenesis. These findings provide a foundation for future research into personalized therapeutic strategies targeting genetic and molecular pathways, particularly for cases with unique etiological mechanisms.

References

[1] Fowler JR, Maani EV, Dunton CJ, et al. Cervical Cancer (Nursing) [Updated 2023 Nov 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK570551/

[2] Singh, D., Vignat, J., Lorenzoni, V., Eslahi, M., Ginsburg, O., Lauby-Secretan, B., Arbyn, M., Basu, P., Bray, F., & Vaccarella, S. (2023). Global estimates of incidence and mortality of cervical cancer in 2020: a baseline analysis of the WHO Global Cervical Cancer Elimination Initiative. The Lancet. Global health, 11(2), e197–e206. https://doi.org/10.1016/S2214-109X(22)00501-0

[3] Zhang, X., Zeng, Q., Cai, W., & Ruan, W. (2021). Trends of cervical cancer at global, regional, and national level: data from the Global Burden of Disease study 2019. BMC public health, 21(1), 894. https://doi.org/10.1186/s12889-021-10907-5

[4] Zhang, L., Ruan, Z., Hong, Q., Gong, X., Hu, Z., Huang, Y., & Xu, A. (2012). Single nucleotide polymorphisms in DNA repair genes and risk of cervical cancer: A case-control study. Oncology letters, 3(2), 351–362. https://doi.org/10.3892/ol.2011.463

[5] Shaswati, M., Oeishy, F. H., Mumu, S. B., Zahid, M. Z. I., Hossain, M., Haque, M. A., ... & Mostaid, M. S. (2023). Polymorphisms of the interleukin‐6 (IL‐6) gene contribute to cervical cancer susceptibility in Bangladeshi women: A case‐control study. Health Science Reports, 6(5), e1238.

[6] Abbas, M., Srivastava, K., Imran, M., & Banerjee, M. (2019). Genetic polymorphisms in DNA repair genes and their association with cervical cancer. British Journal of Biomedical Science, 76(3), 117-121.

[7] Hu, X., Zhang, Z., Ma, D., Huettner, P. C., Massad, L. S., Nguyen, L., ... & Rader, J. S. (2010). TP53, MDM2, NQO1, and susceptibility to cervical cancer. Cancer epidemiology, biomarkers & prevention, 19(3), 755-761

[8] Klug, S. J., Wilmotte, R., Santos, C., Almonte, M., Herrero, R., Guerrero, I., ... & Munoz, N. (2001). TP53 polymorphism, HPV infection, and risk of cervical cancer. Cancer Epidemiology Biomarkers & Prevention, 10(9), 1009-1012.

[9] Khan, M. H., Khalil, A., & Rashid, H. (2015). Evaluation of the p53 Arg72Pro polymorphism and its association with cancer risk: a HuGE review and meta-analysis. Genetics research, 97, e7

[10] Storey, A., Thomas, M., Kalita, A., Harwood, C., Gardiol, D., Mantovani, F., ... & Banks, L. (1998). Role of a p53 polymorphism in the development of human papilloma-virus-associated cancer. Nature, 393(6682), 229-234.

[11] Koshiol, J., Hildesheim, A., Gonzalez, P., Bratti, M. C., Porras, C., Schiffman, M., ... & Wang, S. S. (2009). Common genetic variation in TP53 and risk of human papillomavirus persistence and progression to CIN3/cancer revisited. Cancer Epidemiology Biomarkers & Prevention, 18(5), 1631-1637.

[12] Berumen, J., Ordoñez, R. M., Lazcano, E., Salmeron, J., Galvan, S. C., Estrada, R. A., ... & Madrigal-De La Campa, A. (2001). Asian-American variants of human papillomavirus 16 and risk for cervical cancer: a case–control study. Journal of the National Cancer Institute, 93(17), 1325-1330.

[13] National Center of Biotechnology Information. https://ncbi.nlm.nih.gov/ [accessed 2024 Dec 01]

[14]National Center of Biotechnology Information. https://www.ncbi.nlm.nih.gov/snp/ [accessed 2024 Dec 01]

[15] STRING: functional protein association networks [accessed Dec. 09, 2024]. https://string-db.org/

[16] GeneMANIA: functional association networks [accessed Dec. 09, 2024]. https://genemania.org/

[17] gnomAD: Genome Aggregation Database [accessed Dec. 10, 2024]. https://gnomad.broadinstitute.org/

[18]KEGG: Kyoto Encyclopedia of Genes and Genomes [accessed Dec. 09, 2024]. https://www.genome.jp/kegg/

[19] DISEASES: Disease-gene associations database [accessed Dec. 09, 2024]. https://diseases.jensenlab.org/

[20] Seavey, S. E., Holubar, M., Saucedo, L. J., & Perry, M. E. (1999). The E7 oncoprotein of human papillomavirus type 16 stabilizes p53 through a mechanism independent of p19ARF. Journal of virology, 73(9), 7590-7598

[21] Bouzid, A., Al Ani, M., de la Fuente, D., Al Shareef, Z. M., Quadri, A., Hamoudi, R., & Al-Rawi, N. (2023). Identification of p53-target genes in human papillomavirus-associated head and neck cancer by integrative bioinformatics analysis. Frontiers in Oncology, 13, 1128753.

[22] Bruni, L., Albero, G., Serrano, B., Mena, M., Gómez, D., Muñoz, J., ... & de Sanjosé, S. (2019). ICO HPV Information Centre Human Papillomavirus and Related Diseases Report-Germany. Summary Report. ICO/IARC Information Centre HPV Cancer. online: https://hpvcentre.net/statistics/reports/DEU.pdf?t=1575294458729

[23] Arbyn, M., Weiderpass, E., Bruni, L., de Sanjosé, S., Saraiya, M., Ferlay, J., & Bray, F. (2020). Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. The Lancet Global Health, 8(2), e191-e203.

[24] Burd, E. M. (2003). Human papillomavirus and cervical cancer. Clinical microbiology reviews, 16(1), 1-17.

[25] Zur Hausen, H. (2002). Papillomaviruses and cancer: from basic studies to clinical application. Nature reviews cancer, 2(5), 342-350.

[26] Ramachandran, D., & Dörk, T. (2021). Genomic risk factors for cervical cancer. Cancers, 13(20), 5137.

[27] Muñoz, N., Franceschi, S., Bosetti, C., Moreno, V., Herrero, R., Smith, J. S., ... & Bosch, F. X. (2002). Role of parity and human papillomavirus in cervical cancer: the IARC multicentric case-control study. The Lancet, 359(9312), 1093-1101

[28] Franceschi, S., Rajkumar, T., Vaccarella, S., Gajalakshmi, V., Sharmila, A., Snijders, P. J., ... & Herrero, R. (2003). Human papillomavirus and risk factors for cervical cancer in Chennai, India: A case‐control study. International journal of cancer, 107(1), 127-133

[29] De Souza, C., Madden, J., Koestler, D. C., Minn, D., Montoya, D. J., Minn, K., ... & Chien, J. (2021). Effect of the p53 P72R polymorphism on mutant TP53 allele selection in human cancer. JNCI: Journal of the National Cancer Institute, 113(9), 1246-1257.

[30] Chernock, R. D., Wang, X., Gao, G., Lewis Jr, J. S., Zhang, Q., Thorstad, W. L., & El-Mofty, S. K. (2013). Detection and significance of human papillomavirus, CDKN2A (p16) and CDKN1A (p21) expression in squamous cell carcinoma of the larynx. Modern Pathology, 26(2), 223-231.

[31] Zhu, D., Jiang, X. H., Jiang, Y. H., Ding, W. C., Zhang, C. L., Shen, H., ... & Wang, H. (2014). Amplification and overexpression of TP63 and MYC as biomarkers for transition of cervical intraepithelial neoplasia to cervical cancer. International Journal of Gynecological Cancer, 24(4), 643-648.

[32] Romus, I., Triningsih, F. X., Mangunsudirdjo, S., & Harijadi, A. (2013). Clinicopathology significance of p53 and p63 expression in Indonesian cervical squamous cell carcinomas. Asian Pacific Journal of Cancer Prevention, 14(12), 7737-7741.

[33] Mitildzans, A., Arechvo, A., Rezeberga, D., & Isajevs, S. (2017). Expression of p63, p53 and Ki-67 in patients with cervical intraepithelial neoplasia. Turk Patoloji Dergisi.

[34] Martin, L. G., Demers, G. W., & Galloway, D. A. (1998). Disruption of the G1/S transition in human papillomavirus type 16 E7-expressing human cells is associated with altered regulation of cyclin E. Journal of virology, 72(2), 975-985

[35] Pellarin, I., Dall’Acqua, A., Favero, A., Segatto, I., Rossi, V., Crestan, N., ... & Baldassarre, G. (2025). Cyclin-dependent protein kinases and cell cycle regulation in biology and disease. Signal Transduction and Targeted Therapy, 10(1), 11.

Downloads

Published

2025-05-05

How to Cite

Kırkık, D., & Özbey, G. (2025). Genetic Insights into Cervical Cancer: In silico approach. International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.969

Issue

Section

Research Article