Effect of predicted lung mass versus fixed mass regimes on lung dose in SIRT (90Y)
DOI:
https://doi.org/10.22399/ijcesen.231Keywords:
90Y dosimetry, Lung mass, Lung doseAbstract
This work sought to investigate the impact of fixed lung mass regime versus individualized measures on the lung absorbed dose in 90Y therapy. 14 patients were injected with 3-5 mCi 99mTc-MAA pursued by whole-body scans with 15% photo-peak window width at 140 keV. SPECT/CT scans were acquired with attenuation and scatter correction. The lung shunt fraction (LSF) was generated from whole-body scans (WBS) and SPECT/CT. Lung volume was measured by contouring the target organ over CT images. Variation, Kruskal Wallis, and Mann-Whitney tests were applied for statistical analysis. In result, 64% of the patients exhibited less than 1 kg lung mass, and the remaining 26% had lung mass larger than 1 kg. The estimated lung shunt fractions from SPECT/CT were greatly lower than planar images with a median of -45% (range: -28 to -69%). The lung dose estimates varied between fixed lung-mass regime used in (TheraSphere Treatment Sheet) and real measures approach with a median difference of 9% and a range from -34% to 76%. However, a significant difference was found in lung dose estimates between planar and SPECT/CT modalities independent of lung mass. It was accordingly inferred that lung mass may vary among patients influencing the predicted dose and the tailored 90Y activity. For precise medicine, the fixed lung mass used on a routine basis should be replaced by patient-specific measures.
References
Singh, P., & Anil, G. (2014). Yttrium-90 radioembolization of liver tumors: what do the images tell us?. Cancer imaging : the official publication of the International Cancer Imaging Society, 13(4), 645–657. https://doi.org/10.1102/1470-7330.2013.0057
Roeske, J. C., Aydogan, B., Bardies, M., & Humm, J. L. (2008). Small-scale dosimetry: challenges and future directions. Seminars in nuclear medicine, 38(5), 367–383. https://doi.org/10.1053/j.semnuclmed.2008.05.003
Ilhan, H., Goritschan, A., Paprottka, P., Jakobs, T. F., Fendler, W. P., Todica, A., Bartenstein, P., Hacker, M., & Haug, A. R. (2015). Predictive Value of 99mTc-MAA SPECT for 90Y-Labeled Resin Microsphere Distribution in Radioembolization of Primary and Secondary Hepatic Tumors. Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 56(11), 1654–1660. https://doi.org/10.2967/jnumed.115.162685
Tanyildizi H. (2014). Dosimetric calculations of y-90 microsphere treatment for primary and metastatic liver tumours (dissertation). Istanbul: Istanbul Univ.
Kim, S. P., Cohalan, C., Kopek, N., & Enger, S. A. (2019). A guide to 90Y radioembolization and its dosimetry. Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB), 68, 132–145. https://doi.org/10.1016/j.ejmp.2019.09.236
Vauthey, J. N., Abdalla, E. K., Doherty, D. A., Gertsch, P., Fenstermacher, M. J., Loyer, E. M., Lerut, J., Materne, R., Wang, X., Encarnacion, A., Herron, D., Mathey, C., Ferrari, G., Charnsangavej, C., Do, K. A., & Denys, A. (2002). Body surface area and body weight predict total liver volume in Western adults. Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society, 8(3), 233–240. https://doi.org/10.1053/jlts.2002.31654
Gulec, S. A., Mesoloras, G., & Stabin, M. (2006). Dosimetric techniques in 90Y-microsphere therapy of liver cancer: The MIRD equations for dose calculations. Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 47(7), 1209–1211.
Walrand, S., Hesse, M., Chiesa, C., Lhommel, R., & Jamar, F. (2014). The low hepatic toxicity per Gray of 90Y glass microspheres is linked to their transport in the arterial tree favoring a nonuniform trapping as observed in posttherapy PET imaging. Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 55(1), 135–140. https://doi.org/10.2967/jnumed.113.126839
Salem, R., Lewandowski, R. J., Gates, V. L., Nutting, C. W., Murthy, R., Rose, S. C., Soulen, M. C., Geschwind, J. F., Kulik, L., Kim, Y. H., Spreafico, C., Maccauro, M., Bester, L., Brown, D. B., Ryu, R. K., Sze, D. Y., Rilling, W. S., Sato, K. T., Sangro, B., Bilbao, J. I., (2011). Research reporting standards for radioembolization of hepatic malignancies. Journal of vascular and interventional radiology : JVIR, 22(3), 265–278. https://doi.org/10.1016/j.jvir.2010.10.029
Giammarile, F., Bodei, L., Chiesa, C., Flux, G., Forrer, F., Kraeber-Bodere, F., Brans, B., Lambert, B., Konijnenberg, M., Borson-Chazot, F., Tennvall, J., Luster, M., & Therapy, Oncology and Dosimetry Committees (2011). EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. European journal of nuclear medicine and molecular imaging, 38(7), 1393–1406. https://doi.org/10.1007/s00259-011-1812-2
Bruix, J., Sherman, M., & American Association for the Study of Liver Diseases (2011). Management of hepatocellular carcinoma: an update. Hepatology (Baltimore, Md.), 53(3), 1020–1022. https://doi.org/10.1002/hep.24199
Garin, E., Rolland, Y., Laffont, S., & Edeline, J. (2016). Clinical impact of (99m)Tc-MAA SPECT/CT-based dosimetry in the radioembolization of liver malignancies with (90)Y-loaded microspheres. European journal of nuclear medicine and molecular imaging, 43(3), 559–575. https://doi.org/10.1007/s00259-015-3157-8
Garin, E., Lenoir, L., Rolland, Y., Laffont, S., Pracht, M., Mesbah, H., Porée, P., Ardisson, V., Bourguet, P., Clement, B., & Boucher, E. (2011). Effectiveness of quantitative MAA SPECT/CT for the definition of vascularized hepatic volume and dosimetric approach: phantom validation and clinical preliminary results in patients with complex hepatic vascularization treated with yttrium-90-labeled microspheres. Nuclear medicine communications, 32(12), 1245–1255. https://doi.org/10.1097/MNM.0b013e32834a716b
Allred, J. D., Niedbala, J., Mikell, J. K., Owen, D., Frey, K. A., & Dewaraja, Y. K. (2018). The value of 99mTc-MAA SPECT/CT for lung shunt estimation in 90Y radioembolization: a phantom and patient study. EJNMMI research, 8(1), 50. https://doi.org/10.1186/s13550-018-0402-8
Lopez, B., Mahvash, A., Lam, M. G. E. H., & Kappadath, S. C. (2019). Calculation of lung mean dose and quantification of error for 90 Y-microsphere radioembolization using 99m Tc-MAA SPECT/CT and diagnostic chest CT. Medical physics, 46(9), 3929–3940. https://doi.org/10.1002/mp.13575
Rosenblum, L. J., Mauceri, R. A., Wellenstein, D. E., Thomas, F. D., Bassano, D. A., Raasch, B. N., Chamberlain, C. C., & Heitzman, E. R. (1980). Density patterns in the normal lung as determined by computed tomography. Radiology, 137(2), 409–416. https://doi.org/10.1148/radiology.137.2.7433674
Kao, Y. H., Magsombol, B. M., Toh, Y., Tay, K. H., Chow, P. K.h, Goh, A. S., & Ng, D. C. (2014). Personalized predictive lung dosimetry by technetium-99m macroaggregated albumin SPECT/CT for yttrium-90 radioembolization. EJNMMI research, 4, 33. https://doi.org/10.1186/s13550-014-0033-7
Pupulim, L. F., Ronot, M., Paradis, V., Chemouny, S., & Vilgrain, V. (2018). Volumetric measurement of hepatic tumors: Accuracy of manual contouring using CT with volumetric pathology as the reference method. Diagnostic and interventional imaging, 99(2), 83–89. https://doi.org/10.1016/j.diii.2017.11.002
Maughan, N. M., Garcia-Ramirez, J., Arpidone, M., Swallen, A., Laforest, R., Goddu, S. M., Parikh, P. J., & Zoberi, J. E. (2019). Validation of post-treatment PET-based dosimetry software for hepatic radioembolization of Yttrium-90 microspheres. Medical physics, 46(5), 2394–2402. https://doi.org/10.1002/mp.13444
Santoro, L., Pitalot, L., Trauchessec, D., Mora-Ramirez, E., Kotzki, P. O., Bardiès, M., & Deshayes, E. (2021). Clinical implementation of PLANET® Dose for dosimetric assessment after [177Lu]Lu-DOTA-TATE: comparison with Dosimetry Toolkit® and OLINDA/EXM® V1.0. EJNMMI research, 11(1), 1. https://doi.org/10.1186/s13550-020-00737-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.