The Optical Properties of Galaxy Cluster Abell 2319
DOI:
https://doi.org/10.22399/ijcesen.236Keywords:
galaxies: clustering, galaxies: structure, techniques: photometric, techniques: spectroscopic, Luminosity FunctionAbstract
The optical photometric and spectroscopic investigations of the massive and merging galaxy cluster Abell 2319 (A2319) are presented here. RTT150 telescope of TÜBİTAK, Antalya, Türkiye used CCD imaging and spectroscopic observations. In this paper, 110 galaxies were determined in A2319 and defined as the magnitudes of the Bessel B and R filters in each cluster member galaxy. Spectral observations were done of the brightest cluster galaxy (BCG) and six additional brilliant galaxies. We estimated the Luminosity Function (LF) of galaxies for each filter. The resulting LF of cluster galaxies for each filter is well-fitted by the Double Schechter function. The best-fit parameter values derived as the characteristic absolute magnitudes are -21.08 ± 0.03, and -20.84 ± 0.01, -21.43 ± 0.02, and -20.54 ± 0.02, and the slopes at the faint end of the LF were -1.34 ± 0.04 and -1.12 ± 0.03, -1.47 ± 0.05 and -1.18 ± 0.03 for B and R filters, respectively.
References
. Abell, G. O., Corwin, H. G., & Olowin, R. P. (1989). A catalog of rich clusters of galaxies. Astrophysical Journal Supplement Series, 70, 1. https://doi.org/10.1086/191333
. Baldwin, J. A., Phillips, M. M., & Terlevich, E. (1981). Classification parameters for the emission-line spectra of extragalactic objects. Publications of the Astronomical Society of the Pacific, 93, 5. https://doi.org/10.1086/130766
. Bautz, L. P., & Morgan, W. W. (1970). On the Classification of the Forms of Clusters of Galaxies. The Astrophysical Journal, 162, L149. https://doi.org/10.1086/180643
. Binette, L., Dopita, M. A., & Tuohy, I. R. (1985). Radiative shock-wave theory. II - High-velocity shocks and thermal instabilities. The Astrophysical Journal, 297, 476. https://doi.org/10.1086/163544
. Bond, J. R., Cole, S., Efstathiou, G., & Kaiser, N. (1991). Excursion set mass functions for hierarchical Gaussian fluctuations. The Astrophysical Journal, 379, 440. https://doi.org/10.1086/170520
. Dopita, M. A., & Sutherland, R. S. (2004). Astrophysics of the diffuse universe. Springer Science & Business Media.
. Durret, F., Adami, C., Cappi, A., Maurogordato, S., Márquez, I., Ilbert, O., Coupon, J., Arnouts, S., Benoist, C., Blaizot, J., Edorh, T. M., Garilli, B., Guennou, L., Brun, V. L., Fèvre, O. L., Mazure, A., McCracken, H. J., Mellier, Y., Mezrag, C., . . . Ulmer, M. P. (2011). Galaxy cluster searches based on photometric redshifts in the four CFHTLS Wide fields. Astronomy and Astrophysics, 535, A65. https://doi.org/10.1051/0004-6361/201116985
. Erdim, M. K., Ezer, C., Unver, O., Hazar, F. A., & Hüdaverdi, M. (2021). The relative supernovae contribution to the chemical enrichment history of Abell 1837. Monthly Notices of the Royal Astronomical Society, 508(3), 3337–3344. https://doi.org/10.1093/mnras/stab2730
. Faber, S. M., & Dressler, A. (1977). Radial velocities for galaxies in 11 clusters. The Astronomical Journal, 82, 187. https://doi.org/10.1086/112028
. Feng, L., Yan, P., & Yuan, Q. (2014). Luminosity Function of The Galaxy Cluster Abell 85. Chinese Astronomy and Astrophysics, 38(3), 247–256. https://doi.org/10.1016/j.chinastron.2014.07.003
. Feretti, L., Giovannini, G., & Böhringer, H. (1997). The radio and X-ray properties of Abell 2319. New Astronomy, 2(6), 501–515. https://doi.org/10.1016/s1384-1076(97)00034-1
. Hamuy, M., Suntzeff, N. B., Heathcote, S., Walker, A. R., Gigoux, P., & Phillips, M. M. (1994). Southern spectrophotometric standards, 2. Publications of the Astronomical Society of the Pacific, 106, 566. https://doi.org/10.1086/133417
. Hamuy, M., Walker, A. R., Suntzeff, N. B., Gigoux, P., Heathcote, S., & Phillips, M. M. (1992). Southern spectrophotometric standards. Publications of the Astronomical Society of the Pacific, 104, 533. https://doi.org/10.1086/133028
. Kewley, L. J., Groves, B., Kauffmann, G., & Heckman, T. M. (2006). The host galaxies and classification of active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 372(3), 961–976. https://doi.org/10.1111/j.1365-2966.2006.10859.x
. Mahdavi, A., & Geller, M. J. (2001). The LX-Σ relation for galaxies and clusters of galaxies. The Astrophysical Journal, 554(2), L129–L132. https://doi.org/10.1086/321710
. McCleary, J., Dell’Antonio, I., & Von Der Linden, A. (2020). Dark Matter Distribution of Four Low-z Clusters of Galaxies. The Astrophysical Journal, 893(1), 8. https://doi.org/10.3847/1538-4357/ab7c58
. Monet, D., Canzian, B., Harris, H., Reid, N. H., Rhodes, A. B., & Sell, S. (1998). VIZIER Online Data Catalog: The PMM USNO-A1.0 Catalogue (Monet 1997). yCat. https://ui.adsabs.harvard.edu/abs/1998yCat.1243. . ..0M/abstract
. Oegerle, W. R., Hill, J. M., & Fitchett, M. J. (1995). Observations of high dispersion clusters of galaxies: constraints on cold dark matter. The Astronomical Journal, 110, 32. https://doi.org/10.1086/117495
. Osterbrock, D. E. (1989). Astrophysics of gaseous nebulae and active galactic nuclei. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, by Donald E. Osterbrock. Published by University Science Books, ISBN 0-935702-22-9, 408pp, 1989.
. Phillipps, S., & Driver, S. P. (1995). Are disappearing dwarfs just lying low? Monthly Notices of the Royal Astronomical Society. https://doi.org/10.1093/mnras/274.3.832
. Popesso, P., & Biviano, A. (2006). The AGN fraction–velocity dispersion relation in clusters of galaxies. Astronomy and Astrophysics, 460(2), L23–L26. https://doi.org/10.1051/0004-6361:20066269
. Schechter, P. L. (1976a). An analytic expression for the luminosity function for galaxies. The Astrophysical Journal, 203, 297. https://doi.org/10.1086/154079
. Schechter, P. L. (1976b). An analytic expression for the luminosity function for galaxies. The Astrophysical Journal, 203, 297. https://doi.org/10.1086/154079
. Struble, M. F., & Rood, H. J. (1982). Morphological classification /revised RS/ of Abell clusters in D less than or equal to 4 and an analysis of observed correlations. The Astronomical Journal, 87, 7. https://doi.org/10.1086/113081
. Trèvese, D., Cirimele, G., & De Simone, M. (2000). An X‐Ray and optical study of matter distribution in the galaxy cluster A2319. The Astrophysical Journal, 530(2), 680–687. https://doi.org/10.1086/308381
. Turner, D. J., Giles, P., Romer, A. K., Wilkinson, R. D., Upsdell, E. W., Klein, M., Viana, P. T. P., Hilton, M., Bhargava, S., Collins, C., Mann, R., Sahlén, M., & Stott, J. P. (2022). TheXMMCluster Survey: an independent demonstration of the fidelity of the eFEDS galaxy cluster data products and implications for future studies. Monthly Notices of the Royal Astronomical Society, 517(1), 657–674. https://doi.org/10.1093/mnras/stac2463
. Wu, X., Fang, L., & Xu, W. (1998). Updating the $sigma$-$T$ relationship for galaxy clusters. arXiv (Cornell University). https://doi.org/10.48550/arxiv.astro-ph/9808181
. Yan, P., Yuan, Q., Zhang, L., & Zhou, X. (2014). Multıcolor Photometry Of The Mergıng Galaxy Cluster A2319: Dynamıcs And Star Formatıon Propertıes. The Astronomical Journal, 147(5), 106. https://doi.org/10.1088/0004-6256/147/5/106
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 International Journal of Computational and Experimental Science and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.