X-ray Investigation of the Supernova Remnant Candidate G278.0+12.4 and Prospect of Future Missions
X-ray Investigation of the Supernova Remnant Candidate G278.0+12.4 and Prospect of Future Missions
DOI:
https://doi.org/10.22399/ijcesen.547Keywords:
Supernova Remnants, G278.0+12.4, X-rays, SimulationsAbstract
In this work, we analyze the X-ray data of supernova remnant (SNR) candidate G278.0+12.4. We examine its nature and the X-ray properties such as electron temperature kTe and abundances, using Suzaku data. We found that the X-ray emission is well represented by two-component model: an unabsorbed thermal plasma with about 5 keV and non-thermal components with a photon index 0.5-1. Our spectral analysis confirm that the G278.0+12.4 is likely to be an SNR. We found non-thermal X-ray emission from the spectra, which indicates that a Pulsar Wind Nebula scenario is possible for G278.0+12.4. In order to make predictions for future missions, we perform XRISM and Athena simulations. We present our results on the nature of G278.0+12.4.
References
Trumper, J. (1982). The ROSAT mission. Advances in Space Research 2: 241–249.
DOI: 10.1016/0273-1177(82)90070-9
Vink, J. (2020). Physics and Evolution of Supernova Remnants. Springer International Publishing, Cham, Switzerland.
Voges, W., Aschenbach, B., Boller, T., Brauninger H., Briel U., Burkert W. et al. (1999). The ROSAT all-sky survey bright source catalogue. Astronomy and Astrophysics. 349: 389-405.
DOI: 10.48550/arXiv.astro-ph/9909315
Mitsuda, K., Bautz M., Inoue H., Kelley R.L., Koyama K., Kunieda H. et al. (2007), The X-Ray Observatory Suzaku. Publications of the Astronomical Society of Japan. 59 (1): 1-7. DOI: 10.1093/pasj/59.sp1.S1
Koyama, K., Tsunemi, H., Dotani, T., Bautz, M.W., Hayashida, K., Tsuru T.G.. et al. (2007). X-Ray Imaging Spectrometer (XIS) on Board Suzaku. Publications of the Astronomical Society of Japan. 59: 23–33. DOI:10.1093/pasj/59.sp1. S23.
Arnaud K. A. (1996), XSPEC: The First Ten Years. in Jacoby G. H., Barnes J., eds, ASP Conf. Ser. Vol. 101, Astronomical Data Analysis Software and Systems V. Astron. Soc. Pac., San Francisco, CA, p. 17
Foster A. R., Ji L., Smith R.K., Brickhouse N.S. (2012), Updated Atomic Data and Calculations for X-Ray Spectroscopy. The Astrophysical Journal, 756 (1): 128-138. DOI:10.1088/0004-637X/756/2/128
Smith R.K., Brickhouse N.S., Liedahl D.A., Raymond J.C., (2001). Collisional Plasma Models with APEC/APED: Emission-Line Diagnostics of Hydrogen-like and Helium-like Ions. The Astrophysical Journal. 556(2), L91-L95. DOI:10.1086/322992
Wilms J., Alle A., McCray R., (2000), On the Absorption of X-Rays in the Interstellar Medium. The Astrophysical Journal. 542 (2), 914-924. DOI: 10.1086/317016
Barret, D., Cucchetti, E. (2018). X-IFU response matrices [online]. Website http://x-ifu-resources.irap.omp.eu/
Tashiro, M. Maejima H., Toda K., Kelley R., Reichenthal L., Lobell J. et al., (2018). Concept of the X-ray Astronomy Recovery Mission. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 10699, Proc. SPIE, 1069922. DOI:10.1117/12.2309455
Ishisaki, Y., Kelley, R. L., Awaki, H., Balleza J. C., Barnstable K. R., Bialas T.G., et al. (2022). Status of resolve instrument onboard X-Ray Imaging and Spectroscopy Mission (XRISM). Proceedings of the SPIE. 12181: 121811S. DOI: 10.1117/12.2630654
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.