The Adaptive Consumer: Social Media, Q-Commerce, and Dark Warehouses Drive Purchase Flexibility in Indian Cities
DOI:
https://doi.org/10.22399/ijcesen.2557Keywords:
Social Media, Warehouse Management, Marketing, Quick commerce, ManagementAbstract
Focusing on the effects of social media, fast commerce (Q-commerce), and dark warehouses on consumer buying flexibility, this paper investigates the changing dynamics of consumer behaviour in urban India. Data was gathered from three representative samples spread throughout four major metropolitan cities—Hyderabad, Chennai, and Bangalore—using a quantitative method. The effect of every variable was examined using structural equation modelling. Findings show that social media (β = 0.734, p < 0.001) exerts the strongest positive impact on customer purchase flexibility, followed by Q-commerce (β = 0.980, p < 0.001), while dark warehouses show a significant yet negative influence (β = -0.536, p < 0.001). With t-values far above the crucial threshold, all relationships were statistically significant. These results emphasize the flexible character of the contemporary Indian customer and show how important internet infrastructure and new retail concepts are in influencing buying choices. For marketers and logistics planners trying to improve consumer response in fast digitizing metropolitan areas, the study provides strategic insights.
References
[1] Aazam, M., Zeadally, S., & Harras, K. A. (2018). Deploying fog computing in industrial Internet of Things and Industry 4.0. IEEE Transactions on Industrial Informatics, 14(10), 4674–4682. https://doi.org/10.1109/TII.2018.2855198
[2] Albahar, M. A., & Rjab, A. A. (2020). Enhancing cybersecurity in IoT using deep learning. International Journal of Advanced Computer Science and Applications, 11(5), 135–142.
[3] Al-Turjman, F., & Malekloo, A. (2019). Smart parking in IoT-enabled cities: A survey. Sustainable Cities and Society, 49, 101608. https://doi.org/10.1016/j.scs.2019.101608
[4] Alsheikh, M. A., Lin, S., Niyato, D., Tan, H. P., & Han, Z. (2014). Mobile big data analytics using deep learning and Apache Spark. IEEE Network, 30(3), 22–29. https://doi.org/10.1109/MNET.2016.7474343
[5] Alzahrani, B. A., Al-Malaise, A. A., & Alhaidari, F. A. (2020). Machine learning in intrusion detection systems: A survey. IEEE Access, 8, 219642–219659. https://doi.org/10.1109/ACCESS.2020.3042327
[6] Bakar, K. A., Ramli, M. F., & Ahmad, R. B. (2019). A review of deep learning methods for cybersecurity. Journal of Information Security, 10(03), 125–136. https://doi.org/10.4236/jis.2019.103007
[7] Bello, O., Zeadally, S., & Badra, M. (2017). Network layer inter-operation of Device-to-Device communication technologies in Internet of Things (IoT). Ad Hoc Networks, 57, 52–62. https://doi.org/10.1016/j.adhoc.2017.08.006
[8] Berman, D. S., Buczak, A. L., Chavis, J. S., & Corbett, C. L. (2019). A survey of deep learning methods for cyber security. Information, 10(4), 122. https://doi.org/10.3390/info10040122
[9] Bhushan, B., Sahoo, B., & Mishra, P. (2020). A framework for smart logistics and transportation systems using Internet of Things. International Journal of Scientific & Technology Research, 9(3), 1061–1064.
[10] Bouaziz, I., Boussaid, O., & Bentayeb, F. (2020). A survey on data stream clustering algorithms. ACM Computing Surveys (CSUR), 53(3), 1–37. https://doi.org/10.1145/3397166
[11] Butun, I., Osterweil, E., & Sankar, R. (2020). A survey of intrusion detection systems in Internet of Things. IEEE Communications Surveys & Tutorials, 22(1), 616–644. https://doi.org/10.1109/COMST.2019.2953369
[12] Chen, L., & Ma, X. (2019). Real-time intrusion detection in IoT based on deep learning. Procedia Computer Science, 147, 430–435. https://doi.org/10.1016/j.procs.2019.01.127
[13] Chen, X., Xu, Z., Liu, Z., & Hu, Q. (2020). Deep reinforcement learning for task offloading and resource allocation in mobile edge computing. IEEE Transactions on Vehicular Technology, 69(5), 5929–5943. https://doi.org/10.1109/TVT.2020.2974312
[14] Diro, A. A., & Chilamkurti, N. (2018). Distributed attack detection scheme using deep learning approach for Internet of Things. Future Generation Computer Systems, 82, 761–768. https://doi.org/10.1016/j.future.2017.08.043
[15] Du, X., & Wang, H. (2020). Secure and efficient data transmission for smart grid using blockchain. IEEE Transactions on Industrial Informatics, 16(3), 2206–2215. https://doi.org/10.1109/TII.2019.2946832
[16] Dutta, P., & Datta, S. (2020). Secure smart healthcare IoT framework based on blockchain technology. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 9(5), 1740–1745.
[17] Fan, Q., Li, Y., Liu, Y., & Zhao, Y. (2020). Blockchain-based secure and efficient logistics management system for intelligent Internet of Things. IEEE Access, 8, 123212–123224. https://doi.org/10.1109/ACCESS.2020.3006932
[18] Gai, K., Wu, Y., Zhu, L., & Xu, L. (2019). Differential privacy-based online learning for Internet of Things. IEEE Internet of Things Journal, 6(2), 2737–2747. https://doi.org/10.1109/JIOT.2018.2883241
[19] Ghosh, U., & Ghosh, D. (2018). Real-time detection of DDoS attacks using machine learning techniques. Procedia Computer Science, 132, 591–597. https://doi.org/10.1016/j.procs.2018.05.209
[20] Gupta, M., Abdelsalam, M., Khorsandroo, S., & Mittal, S. (2020). Security and privacy in smart farming: Challenges and opportunities. IEEE Access, 8, 34564–34584. https://doi.org/10.1109/ACCESS.2020.2975142
[21] He, Y., Zhang, H., Liu, K., & Li, X. (2019). Reinforcement learning-based task offloading and resource allocation for multi-server mobile edge computing. Wireless Networks, 25, 4321–4335. https://doi.org/10.1007/s11276-018-1740-3
[22] Hu, P., Dhelim, S., Ning, H., & Qiu, T. (2020). Survey on fog computing: Architecture, key technologies, applications and open issues. Journal of Network and Computer Applications, 98, 27–42. https://doi.org/10.1016/j.jnca.2020.102875
[23] Islam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). The Internet of Things for health care: A comprehensive survey. IEEE Access, 3, 678–708. https://doi.org/10.1109/ACCESS.2015.2437951
[24] Kang, J., Yu, R., Huang, X., Maharjan, S., Zhang, Y., & Hossain, E. (2019). Enabling localized peer-to-peer electricity trading among plug-in hybrid electric vehicles using consortium blockchains. IEEE Transactions on Industrial Informatics, 13(6), 3154–3164. https://doi.org/10.1109/TII.2019.2932541
[25] Khan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, 82, 395–411. https://doi.org/10.1016/j.future.2017.11.022
[26] Kim, S., Kim, H., Lee, S., & Choi, M. (2020). Deep learning-based real-time intrusion detection for connected vehicles. IEEE Access, 8, 107177–107186. https://doi.org/10.1109/ACCESS.2020.3000563
[27] Li, J., Xia, Y., & Yang, Y. (2020). A blockchain-based access control scheme for IoT. IEEE Internet of Things Journal, 7(3), 2115–2129. https://doi.org/10.1109/JIOT.2019.2959606
[28] Li, X., Jiang, P., Chen, T., Luo, X., & Wen, Q. (2018). A survey on the security of blockchain systems. Future Generation Computer Systems, 107, 841–853. https://doi.org/10.1016/j.future.2017.08.020
[29] Liu, C., Zhang, J., Zhang, Y., & Liu, Y. (2019). Blockchain-based data integrity service framework for IoT data. IEEE Internet of Things Journal, 6(3), 4691–4701. https://doi.org/10.1109/JIOT.2019.2905273
[30] Liu, J., Zhang, Y., Li, H., Chen, X., & Bhuiyan, M. Z. A. (2020). Secure and efficient task offloading and resource allocation in mobile edge computing using deep reinforcement learning. IEEE Internet of Things Journal, 7(4), 3722–3735. https://doi.org/10.1109/JIOT.2019.2959620
[31] Liu, Y., Gao, L., Sun, X., & Li, X. (2020). Deep learning and its application to general intrusion detection in Internet of Things. Wireless Communications and Mobile Computing, 2020, 1–12. https://doi.org/10.1155/2020/7694791
[32] Lu, Y., Huang, X., Dai, Y., Maharjan, S., & Zhang, Y. (2020). Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Transactions on Industrial Informatics, 16(6), 4177–4186. https://doi.org/10.1109/TII.2019.2942190
[33] Luo, E., Hou, H., & Zhou, W. (2018). A survey of load balancing in cloud computing: Challenges and algorithms. Journal of Computer Research and Development, 55(2), 231–245.
[34] Mahmood, M. A., & Desmedt, Y. (2019). Lightweight cryptographic protocols for IoT: A review. IEEE Internet of Things Journal, 6(1), 439–450. https://doi.org/10.1109/JIOT.2018.2869842
[35] Makhdoom, I., Abolhasan, M., Abbas, H., & Ni, W. (2019). Blockchain’s adoption in IoT: The challenges, and a way forward. Journal of Network and Computer Applications, 125, 251–279. https://doi.org/10.1016/j.jnca.2018.10.019
[36] Mao, Y., Zhang, J., & Letaief, K. B. (2017). Mobile edge computing: Survey and research outlook. IEEE Communications Surveys & Tutorials, 19(4), 2322–2358. https://doi.org/10.1109/COMST.2017.2745201
[37] Mollah, M. B., Zhao, J., & Niyato, D. (2021). Blockchain for future smart grid: A comprehensive survey. IEEE Internet of Things Journal, 8(1), 18–43. https://doi.org/10.1109/JIOT.2020.3006376
[38] Nguyen, D. C., Ding, M., Pathirana, P. N., & Seneviratne, A. (2021). Federated learning for Internet of Things: A comprehensive survey. IEEE Communications Surveys & Tutorials, 23(3), 1622–1658. https://doi.org/10.1109/COMST.2021.3075439
[39] Ning, H., Liu, H., & Yang, L. T. (2020). Aggregated deep learning for Internet of Things. IEEE Internet of Things Journal, 7(5), 3998–4006. https://doi.org/10.1109/JIOT.2019.2948707
[40] Osman, A. I., Hefny, H. A., & Rizk, M. R. (2021). A secure and lightweight authentication scheme for IoT-based healthcare. Computer Communications, 171, 13–26. https://doi.org/10.1016/j.comcom.2021.02.014
[41] Qi, Q., & Tao, F. (2019). Digital twin and big data towards smart manufacturing and Industry 4.0: 360-degree comparison. IEEE Access, 7, 79052–79063. https://doi.org/10.1109/ACCESS.2019.2912777
[42] Qolomany, B., Al-Fuqaha, A., Gupta, A., Benhaddou, D., & Guizani, M. (2018). A survey on data clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Transactions on Emerging Topics in Computing, 7(3), 385–407. https://doi.org/10.1109/TETC.2018.2859501
[43] Saeed, N., Bader, A., & Yaqoob, I. (2019). Load balancing in fog computing for IoT applications: Recent advances and future directions. IEEE Communications Magazine, 57(5), 74–79. https://doi.org/10.1109/MCOM.2019.1800555
[44] Salah, K., Rehman, M. H., Nizamuddin, N., & Al-Fuqaha, A. (2019). Blockchain for AI: Review and open research challenges. IEEE Access, 7, 10127–10149. https://doi.org/10.1109/ACCESS.2018.2890507
[45] Saleem, Y., Crespi, N., Rehmani, M. H., Copeland, R., & Ahmad, A. (2019). Internet of Things-aided smart grid: Technologies, architectures, applications, prototypes, and future research directions. IEEE Access, 7, 62962–63003. https://doi.org/10.1109/ACCESS.2019.2913986
[46] Samaniego, M., & Deters, R. (2016). Blockchain as a service for IoT. 2016 IEEE International Conference on Internet of Things (iThings), Green Computing and Communications (GreenCom), and Cyber, Physical and Social Computing (CPSCom), 433–436. https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.105
[47] Sha, K., Wang, W., Shi, W., & Wang, L. (2020). Security and privacy in smart cities: Challenges and opportunities. IEEE Access, 8, 23480–23496. https://doi.org/10.1109/ACCESS.2020.2970036
[48] Sharma, P. K., & Park, J. H. (2018). Blockchain based hybrid network architecture for the smart city. Future Generation Computer Systems, 86, 650–655. https://doi.org/10.1016/j.future.2018.04.060
[49] • Sfar, A. R., Natalizio, E., Challal, Y., & Chtourou, Z. (2018). A roadmap for security challenges in the Internet of Things. Digital Communications and Networks, 4(2), 118–137. https://doi.org/10.1016/j.dcan.2017.04.003
[50] Singh, S., Sharma, P. K., Moon, S. Y., & Park, J. H. (2019). Advanced lightweight encryption algorithms for IoT devices: Survey, challenges and solutions. Journal of Ambient Intelligence and Humanized Computing, 10(11), 4339–4353. https://doi.org/10.1007/s12652-018-0971-2
[51] Singh, S., Tripathi, R., & Jindal, A. (2021). Federated learning: A novel privacy-preserving technique for Internet of Things. Journal of King Saud University - Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2021.04.009
[52] Sodhro, A. H., Luo, Z., & Shah, S. A. A. (2020). Energy-efficient adaptive transmission scheme for IoT-based healthcare systems. Electronics, 9(2), 286. https://doi.org/10.3390/electronics9020286
[53] Sun, Y., Zhang, Y., & Wang, Y. (2020). A blockchain-based secure scheme for IoT data sharing. Future Generation Computer Systems, 108, 700–710. https://doi.org/10.1016/j.future.2020.03.013
[54] Tang, F., Doka, K., Zhang, Z., & Wang, Z. (2019). An efficient and reliable congestion control scheme for real-time data in Internet of Things. Computer Networks, 152, 102–113. https://doi.org/10.1016/j.comnet.2019.01.001
[55] Tariq, F., Ali, A., & Khan, M. (2021). Intrusion detection systems for IoT: A comprehensive survey. Computer Communications, 168, 50–79. https://doi.org/10.1016/j.comcom.2020.12.024
[56] Thakur, S., & Das, M. L. (2020). Blockchain-based access control with multiple attribute authorities for secure IoT. Journal of Network and Computer Applications, 165, 102688. https://doi.org/10.1016/j.jnca.2020.102688
[57] Wan, J., Li, D., Li, C., & Wang, S. (2020). Artificial intelligence for fault diagnosis in industrial IoT: A survey. Computer Networks, 174, 107248. https://doi.org/10.1016/j.comnet.2020.107248
[58] Wang, G., Zhang, Y., & Yang, L. T. (2020). Intelligent edge computing for cyber-physical systems: A survey. ACM Transactions on Cyber-Physical Systems, 4(2), 1–27. https://doi.org/10.1145/3359627
[59] Wang, Y., Wang, J., & Guo, D. (2019). Lightweight authentication and key agreement protocol for wearable sensors in wireless body area networks. Computer Networks, 148, 189–202. https://doi.org/10.1016/j.comnet.2018.11.020
[60] Wei, Y., Wu, H., & Wu, G. (2020). A secure and privacy-preserving data aggregation scheme for industrial Internet of Things. IEEE Transactions on Industrial Informatics, 16(9), 5929–5937. https://doi.org/10.1109/TII.2019.2952021
[61] Wu, J., Ding, G., Du, Z., Zhang, J., & Shen, H. (2018). Cognitive Internet of Things: A new paradigm beyond connection. IEEE Internet of Things Journal, 1(2), 129–143. https://doi.org/10.1109/JIOT.2018.2799357
[62] Xie, J., Tang, Y., Huang, T., & Xu, M. (2019). A blockchain-based secure and trusted framework for information propagation in smart cities. Sustainable Cities and Society, 50, 101636. https://doi.org/10.1016/j.scs.2019.101636
[63] Xu, R., Li, J., & He, Y. (2020). An efficient and secure data sharing scheme for industrial Internet of Things. IEEE Transactions on Industrial Informatics, 16(12), 7763–7771. https://doi.org/10.1109/TII.2020.2986737
[64] Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology, 10(2), 1–19. https://doi.org/10.1145/3298981
[65] Yavuz, T., Koç, M., & Türkmen, H. (2021). IoT-enabled smart logistics: A comprehensive review. Computers & Industrial Engineering, 157, 107342. https://doi.org/10.1016/j.cie.2021.107342
[66] Yu, W., Lou, X., & Wu, L. (2020). Privacy-preserving federated learning for intelligent healthcare. IEEE Internet of Things Journal, 7(8), 6952–6963. https://doi.org/10.1109/JIOT.2020.2972927
[67] Zhang, K., Ni, J., Yang, K., Liang, X., Ren, J., & Shen, X. S. (2018). Security and privacy in smart city applications: Challenges and solutions. IEEE Communications Magazine, 55(1), 122–129. https://doi.org/10.1109/MCOM.2017.1600267CM
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.