An experimental study of effect of atmospheric plasma treatment on shear strength of adhesively bonded GFRP-aluminum joints
DOI:
https://doi.org/10.22399/ijcesen.316Keywords:
adhesive bonding, atmospheric plasma treatment, lap-shear strength, aluminum alloy, fiber reinforced polymer compositeAbstract
The objective of this study is to investigate the effect of air (dielectric barrier discharge) DBD plasma treatment on the bonding strength of adhesively bonded glass fiber-reinforced epoxy composite-aluminum lap joints. The bonding performance of lap joints produced by the plasma treatment was compared with that of untreated and peel-ply surface treatments. Water contact angles of the substrates were measured for untreated, peel-ply, and plasma surface-treated substrates. Experimental results showed that plasma-treated aluminum and GFRP substrates increased the wettability properties and thus shear strength of adhesively bonded GFRP-Al joints increased. After the shear tests, the fracture surfaces of the substrates were visually examined and three different damage modes were observed, including light fiber tear failure, adhesive failure, and thin layer cohesive failure modes.
References
Parikh, H. H., & Gohil, P. P. (2015). Tribology of fiber reinforced polymer matrix composites—A review. Journal of Reinforced Plastics and Composites, 34(16), 1340-1346. https://doi.org/10.1177/0731684415591199
Baker, A. A. (2004). Composite materials for aircraft structures. AIAA.
Mazumdar, S. (2001). Composites manufacturing: materials, product, and process engineering. CrC press. https://doi.org/10.1201/9781420041989
Gupta, M. K., & Srivastava, R. K. (2016). Mechanical properties of hybrid fibers-reinforced polymer composite: A review. Polymer-Plastics technology and engineering, 55(6), 626-642. https://doi.org/10.1080/03602559.2015.1098694
Dennetiere, S., Saad, H., Vernay, Y., Rault, P., Martin, C., & Clerc, B. (2019). Supporting energy transition in transmission systems: An operator’s experience using electromagnetic transient simulation. IEEE Power and Energy Magazine, 17(3), 48-60. https://doi.org/10.1109/mpe.2019.2897179
Mouritz, A. P., Gellert, E., Burchill, P., & Challis, K. (2001). Review of advanced composite structures for naval ships and submarines. Composite structures, 53(1), 21-42. https://doi.org/10.1016/S0263-8223(00)00175-6
Jiang, Z., Wan, S., Fang, Z., & Song, A. (2021). Static and fatigue behaviours of a bolted GFRP/steel double lap joint. Thin-Walled Structures, 158, 107170. https://doi.org/10.1016/j.tws.2020.107170
Tu, W., Wen, P. H., Hogg, P. J., & Guild, F. J. (2011). Optimisation of the protrusion geometry in Comeld™ joints. Composites Science and Technology, 71(6), 868-876. https://doi.org/10.1016/j.compscitech.2011.02.001
Ucsnik, S., Scheerer, M., Zaremba, S., & Pahr, D. H. (2010). Experimental investigation of a novel hybrid metal–composite joining technology. Composites Part A: Applied Science and Manufacturing, 41(3), 369-374. https://doi.org/10.1016/j.compositesa.2009.11.003
Nasreen, A., Shaker, K., & Nawab, Y. (2021). Effect of surface treatments on metal–composite adhesive bonding for high-performance structures: an overview. Composite Interfaces, 28(12), 1221-1256. https://doi.org/10.1080/09276440.2020.1870192
Fiore, V., Di Franco, F., Miranda, R., Santamaria, M., Badagliacco, D., & Valenza, A. (2021). Effects of anodizing surface treatment on the mechanical strength of aluminum alloy 5083 to fibre reinforced composites adhesive joints. International Journal of Adhesion and Adhesives, 108, 102868. https://doi.org/10.1016/j.ijadhadh.2021.102868
Diharjo, K., Firdaus, Y., Raharjo, W. W., & Tjahjana, D. D. D. P. (2014, November). Improvement of strength on joint of GFRP/A1-5083 joint using Epoxy/Al-powder adhesive for electric vehicle car body. In 2014 International Conference on Electrical Engineering and Computer Science (ICEECS) (pp. 193-196). IEEE. DOI: 10.1109/ICEECS.2014.7045244
da Costa Mattos, H. S., Monteiro, A. H., & Palazzetti, R. (2012). Failure analysis of adhesively bonded joints in composite materials. Materials & Design, 33, 242-247. https://doi.org/10.1016/j.matdes.2011.07.031
Hunter-Alarcon, R. A., Leyrer, J., Leal, E., Vizan, A., Perez, J., & Da Silva, L. F. M. (2018). Influence of dissimilar composite adherends on the mechanical adhesion of bonded joints for small blade wind turbine applications. International Journal of Adhesion and Adhesives, 83, 178-183. https://doi.org/10.1016/j.ijadhadh.2018.02.018
Pizzi, A., & Mittal, K. L. (Eds.). (2017). Handbook of adhesive technology. CRC press. https://doi.org/10.1201/9781315120942
Valenza, A., Fiore, V., & Fratini, L. (2011). Mechanical behaviour and failure modes of metal to composite adhesive joints for nautical applications. The International Journal of Advanced Manufacturing Technology, 53, 593-600. https://doi.org/10.1007/s00170-010-2866-1
Feraboli P., Masini A., Bonfatti A., Advanced composites for the body and chassis of a production high performance car, International Journal of Vehicle Design 44(3-4), pp. 233-46, 2007. https://doi.org/10.1504/IJVD.2007.013641
Özdemir, A., Kocabaş, İ., & Svanda, P. (2016). Improving the strength of adhesively bonded joints through the introduction of various surface treatments. Journal of adhesion science and Technology, 30(23), 2573-2595. https://doi.org/10.1080/01694243.2016.1188872
Mandolfino, C., Lertora, E., Genna, S., Leone, C., & Gambaro, C. (2015). Effect of laser and plasma surface cleaning on mechanical properties of adhesive bonded joints. Procedia Cirp, 33, 458-463. https://doi.org/10.1016/j.procir.2015.06.054
Martinez, M. A., Velasco, F., Abenojar, J., Chiminelli, A., & Breto, R. (2015). Evaluation of adhesion improvement of a GFRP treated with atmospheric plasma torch. The Journal of Adhesion, 91(12), 937-949. https://doi.org/10.1080/00218464.2014.976789
Subedi, D. P., Joshi, U. M., & Wong, C. S. (2017). Dielectric barrier discharge (DBD) plasmas and their applications. Plasma science and technology for emerging economies: an AAAPT experience, 693-737. https://doi.org/10.1007/978-981-10-4217-1_13
Van Deynse, A., Morent, R., & De Geyter, N. (2016). Surface modification of polymers using atmospheric pressure cold plasma technology. In Polymer science: research advances, pratical applications and educational aspects (pp. 506-516). Formatex Research Center.
Li, J. (2009). The research on the interfacial compatibility of polypropylene composite filled with surface treated carbon fiber. Applied Surface Science, 255(20), 8682-8684. https://doi.org/10.1016/j.apsusc.2009.06.053
Kusano, Y., Andersen, T. L., & Michelsen, P. K. (2008, March). Atmospheric pressure plasma surface modification of carbon fibres. In Journal of Physics: Conference Series (Vol. 100, No. 1, p. 012002). IOP Publishing. doi:10.1088/1742-6596/100/1/012002
Kogelschatz, U. (2003). Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma chemistry and plasma processing, 23(1), 1-46. https://doi.org/10.1023/A:1022470901385
Li, H., Liang, H., He, F., Huang, Y., & Wan, Y. (2009). Air dielectric barrier discharges plasma surface treatment of three-dimensional braided carbon fiber reinforced epoxy composites. Surface and Coatings Technology, 203(10-11), 1317-1321. https://doi.org/10.1016/j.surfcoat.2008.10.042
Rhee, K. Y., Choi, N. S., & Park, S. J. (2002). Effect of plasma treatment of aluminum on the bonding characteristics of aluminum–CFRP composite joints. Journal of adhesion science and technology, 16(11), 1487-1500. https://doi.org/10.1163/156856102320252912
Saleema, N., & Gallant, D. (2013). Atmospheric pressure plasma oxidation of AA6061-T6 aluminum alloy surface for strong and durable adhesive bonding applications. Applied Surface Science, 282, 98-104. https://doi.org/10.1016/j.apsusc.2013.05.064
Wang, X., Lin, J. P., Min, J. Y., Wang, P. C., & Sun, C. C. (2018). Effect of atmospheric pressure plasma treatment on strength of adhesive-bonded aluminum AA5052. The Journal of Adhesion, 94(9), 701-722. https://doi.org/10.1080/00218464.2017.1393747
Sorrentino, L., & Carrino, L. (2009). Influence of process parameters of oxygen cold plasma treatment on wettability ageing time of 2024 aluminium alloy. International journal of adhesion and adhesives, 29(2), 136-143. https://doi.org/10.1016/j.ijadhadh.2008.01.009
Koh, S. K., Park, S. C., Kim, S. R., Choi, W. K., Jung, H. J., & Pae, K. D. (1997). Surface modification of polytetrafluoroethylene by Ar+ irradiation for improved adhesion to other materials. Journal of applied polymer science, 64(10), 1913-1921. https://doi.org/10.1002/(SICI)1097-4628(19970606)64:10<1913::AID-APP5>3.0.CO;2-L
Al-Gunaid, T. A., Krupa, I., Ouederni, M., Krishnamoorthy, S. K., & Popelka, A. (2021). Enhancement of adhesion characteristics of low-density polyethylene using atmospheric plasma initiated-grafting of polyethylene glycol. Polymers, 13(8), 1309. https://doi.org/10.3390/polym13081309
Akiyama, H., Hasegawa, K. O. I. C. H. I., Sekigawa, T. A. K. A. H. I. R. O., & Yamazaki, N. O. R. I. K. O. (2018). Atmospheric pressure plasma treatment for composites bonding. Mitsubishi Heavy Industries Technical Review, 55(2), 1-5.
Sperandio, C., Bardon, J., Laachachi, A., Aubriet, H., & Ruch, D. (2010). Influence of plasma surface treatment on bond strength behaviour of an adhesively bonded aluminium-epoxy system. International Journal of adhesion and adhesives, 30(8), 720-728. https://doi.org/10.1016/j.ijadhadh.2010.07.004
ASTM. (2012). Standard practice for classifying failure modes in fiber-reinforced-plastic (FRP) joints.
Asgari Mehrabadi, F. (2012). Experimental and numerical failure analysis of adhesive composite joints. International Journal of Aerospace Engineering, 2012. https://doi.org/10.1155/2012/925340
Lee, H. K., Pyo, S. H., & Kim, B. R. (2009). On joint strengths, peel stresses and failure modes in adhesively bonded double-strap and supported single-lap GFRP joints. Composite Structures, 87(1), 44-54. https://doi.org/10.1016/j.compstruct.2007.12.005
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.