Production And Characterization Of Electrical Conductive Polymeric Hybrid Composites Containing Organic And Inorganic Materials
DOI:
https://doi.org/10.22399/ijcesen.242Keywords:
Mica, Carbon Nanotube, Hybrid CompositeAbstract
Polymer composites are becoming more and more involved in many industries such as aerospace, automotive, transportation and sports. As usage increases in the commercial market, the polymer industry provides materials to almost every area of technology and industry, allowing the production of materials or new materials to be produced and the development or orientation of new types of needs. In the last 10 years, the use of polymer composites has become the new materials needed in electronic technology. The aim of this study is to investigate the effects of polypropylene (PP) on mechanical and conductivity properties by using mica (M) as an inorganic filler and carbon nano tube (CNT) as an organic filler. Before hybrid composite materials were produced, polypropylene (PP) and M-PP composites were produced and composite with the best mechanical properties were selected. PP-M composites were produced by using a thermokincetic mixer with the addition of mica in 10%, 20%, and 30% weight ratios. Hybrid composites were manufactured using CNT addition into PP-20M with %1, %3, %5, and %7 weight ratios. Mechanical properties of the composite materials produced using tensile and bending tests and viscoelastic properties by dynamic mechanical analysis (DMA), thermal properties by differential scanning calorimeter (DSC) and thermogravimetric (TGA) analyses and morphological structures by scanning electron microscopy (SEM) were investigated
References
Polipropilen, S.T.A Plastik San. Ve Tic.Ltd. Şti. Raporu.
Metin,D.(2002). Interfacial enhancement of polypropylene-zeolite composites (Master's thesis, Izmir Institute of Technology).
Dünya ve Türkiye polipropilen (PP) raporu. 2015-PEGEV.(2015).
Wright, T., Bechtold, T., Bernhard, A., Manian, A. P., & Scheiderbauer, M. (2019). Tailored fibre placement of carbon fibre rovings for reinforced polypropylene composite part 1: PP infusion of carbon reinforcement. Composites Part B: Engineering, 162, 703-711.
Ferro, P. J., & Stevard, H. W. (1987). Mica-a summary of 1986 activity: Mining Engineering.
Sarah Whipkey, Chance Roman, and Kevin Seay.(2015). Processing and Characterization Techniques for a Mica Filled Polymer Composite. Journal of Undergraduate Materials Research, 5.
Topal, E., (2014). Kompozit Delikli Kare Levhalarda İki Yönlü Yükleme Altinda Mekanik Burkulmalarinin İncelenmesi. MSc Thesis Hitit University
Vinay H, B., Govindaraju, H., & Banakar, P. (2015). PROCESSING AND CHARACTERIZATION OF GLASS FIBER AND CARBON FIBER REINFORCED VINYL ESTER BASED COMPOSITES. International Journal of Research in Engineering and Technology, 04, 401-406.
Stewart,K. (2009) & Stewart, R. (2009). Carbon fibre composites poised for dramatic growth, Reinforced Plastics,53.
Bishui,B.M., Dar,R.N. & Mandel,S.S. (1961). Studies on Indian Mica; Effects on Dry Ground on DTA, Control Glass and Ceram., Research Inst. Bui, 8(1), 15-22.
Sever, K., Atagür M., Tunçalp, M., Altay, L., Seki Y., & Sarıkanat, M. (2018). The Effect of Pumice Powder on Mechanical and Thermal Properties of Polypropylene, Journal of Thermoplastic Composite, DOI: 10.1177/0892705718785692.
Romanzini, D., Ornaghi Jr, H. L., Amico, S. C., & Zattera, A. J. (2012). Influence of fiber hybridization on the dynamic mechanical properties of glass/ramie fiber-reinforced polyester composites. Journal of Reinforced Plastics and Composites, 31(23), 1652-1661.
Yang, J., Lin, Y., Wang, J., Lai, M., Li, J., Liu, J., ... & Cheng, H. (2005). Morphology, thermal stability, and dynamic mechanical properties of atactic polypropylene/carbon nanotube composites. Journal of Applied Polymer Science, 98(3), 1087-1091.
Seo, M. K., & Park, S. J. (2004). A Kinetic Study on the Thermal Degradation of Multi‐Walled Carbon Nanotubes‐Reinforced Poly (propylene) Composites. Macromolecular Materials and Engineering, 289(4), 368-374.
Bikiaris, D. (2010). Microstructure and properties of polypropylene/carbon nanotube nanocomposites. Materials, 3(4), 2884.
Manchado, M. L., Valentini, L., Biagiotti, J., & Kenny, J. M. (2005). Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon, 43(7), 1499-1505.
Kaya, N., Atagur, M., Akyuz, O., Seki, Y., Sarikanat, M., Sutcu, M., ... & Sever, K. (2018). Fabrication and characterization of olive pomace filled PP composites. Composites Part B: Engineering, 150, 277-283.
Yang, B. X., Shi, J. H., Pramoda, K. P., & Goh, S. H. (2008). Enhancement of the mechanical properties of polypropylene using polypropylene-grafted multiwalled carbon nanotubes. Composites Science and Technology, 68(12), 2490-2497.
Xu, D., & Wang, Z. (2008). Role of multi-wall carbon nanotube network in composites to crystallization of isotactic polypropylene matrix. Polymer, 49(1), 330-338.
Putnam, J. W., & Watson, C. R. (2002). U.S. Patent No. 6,334,617. Washington, DC: U.S. Patent and Trademark Office.
Shuming, D.,Tarosava, E., Krumme, A., & Meier, P.(2011). Rheological and mechenical properties of poly(lactic) acid/ cellulose and LDPE/cellulose composites. Materials Science, 17(1), 32-37.
Choudhary, B.P. Singh and R.B. (2013) Mathur Syntheses and Applications of Carbon Nanotubes and Their Composites, Edited by Satoru Suzuki, Carbon Nanotubes and Their Composites, DOI: 10.5772/52897
Okuno,K.,& Woodhams, R. T. (1975). Mica reinforced polypropylene. Polymer Engineering & Science, 15(4), 308-315.
Reyes, J. E. P. (2015). Effect of surface treatment and particle loading on the mechanical properties of CFB fly ash reinforced thermoset composite. International Journal of Chemical Engineering and Applications, 6(1), 6.
-Sabu,T.,&Pothan,L.(2008).-Cellulose fibre reinforced polymer composites. Philadel-phia: Old City Publishing.
-Thomas,S., & Pothan L.A, (2008). Natural Fibre Reinforced Polymer Composites: From Macro to Nanoscale, Old City Publishing Inc.
Shumigin, D., Tarasova, E., Krumme, A., & Meier, P. (2011). Rheological and mechanical properties of poly (lactic) acid/cellulose and LDPE/cellulose composites. Materials Science, 17(1), 32-37.
Haque, M., Rahman, R., Islam, N., Huque, M., & Hasan, M. (2010). Mechanical properties of polypropylene composites reinforced with chemically treated coir and abaca fiber. Journal of Reinforced Plastics and Composites, 29(15), 2253-2261.
Pierson, H. O. (2012). Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications. William Andrew.
Mehmet,S. ,Yoldas,S.,Kutlay,S., &Durmuskahya,C. (2014). Determination of properties of Althaea officinalis L. (Marshmallow) fibres as a potential plant fibre in polymeric composite materials, Composites: Part B 57 180–186.
Mohanty, S., Verma, S. K., & Nayak, S. K. (2006). Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Composites Science and Technology, 66(3-4), 538-547.
Nagarajan, T. T., Babu, A. S., Palanivelu, K., & Nayak, S. K. (2016, March). Mechanical and Thermal Properties of PALF Reinforced Epoxy Composites. In Macromolecular Symposia(Vol. 361, No. 1, pp. 57-63).
Arya Uthaman, Hiran Mayookh Lal, Chenggao Li, Guijun Xian, and Sabu Thomas (2021). Mechanical and Water Uptake Properties of Epoxy Nanocomposites with Surfactant-Modified Functionalized Multiwalled Carbon Nanotubes, Nanomaterials (Basel). 11(5): 1234.
Tjong, S. C., Liang, G. D., & Bao, S. P. (2007). Electrical behavior of polypropylene/multiwalled carbon nanotube nanocomposites with low percolation threshold. Scripta Materialia, 57(6), 461.
Bikiaris, D., Vassiliou, A., Chrissafis, K., Paraskevopoulos, K. M., Jannakoudakis, A., & Docoslis, A. (2008). Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polymer Degradation and Stability, 93(5), 952-967.
Nurdina, A. K., Mariatti, M., & Samayamutthirian, P. (2009). Effect of single‐mineral filler and hybrid‐mineral filler additives on the properties of polypropylene composites. Journal of Vinyl and Additive Technology, 15(1), 20-28.
Lux, F. (1993). Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. Journal of materials science, 28(2), 285-301.
-He, D., & Jiang, B. (1993). The elastic modulus of filled polymer composites. Journal of applied polymer science, 49(4), 617-621.
Lee, S. H., Cho, E., Jeon, S. H., & Youn, J. R. (2007). Rheological and electrical properties of polypropylene composites containing functionalized multi-walled carbon nanotubes and compatibilizers. Carbon, 45(14), 2810-2822.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.