Optimizing IoT Data Transmission with the Queen Honey Bee Migration Method for Operational Efficiency of the Hostage Rescue Team

Authors

  • Kasiyanto Universitas Negeri Malang
  • Aripriharta Universitas Negeri Malang
  • Sujito Universitas Negeri Malang

DOI:

https://doi.org/10.22399/ijcesen.3280

Keywords:

Data Transmission Optimization, Data Communication, Hostage Rescue, Urban Warfare, QHBM

Abstract

This research proposes the Queen Honey Bee Migration (QHBM) algorithm to optimize IoT data transmission in hostage rescue operations, with a primary focus on energy efficiency and reliability. The methodology employs comprehensive simulation techniques to compare QHBM performance against two established optimization algorithms—Fuzzy BT and PSO—across diverse network configurations and operational scenarios. Simulation results demonstrate that QHBM significantly outperforms both alternative approaches. The algorithm extends network lifetime by 25% compared to PSO and 15% compared to Fuzzy BT, addressing a critical requirement for prolonged operation during rescue missions. Additionally, QHBM enhances network throughput by 30%, maintaining a consistent data transmission ratio of 98%, while simultaneously reducing computational overhead by 20%. The QHBM algorithm demonstrates particularly robust performance in challenging environments characterized by high node density and dynamic mobility patterns, which closely resemble real-world hostage rescue scenarios. The algorithm achieves this by dynamically balancing energy consumption across the network while maintaining reliable data transmission pathways, even when network topology changes rapidly. The bio-inspired approach of QHBM leverages the efficient decision-making patterns observed in honey bee colonies, specifically the migration behaviors of queen bees, to create adaptive routing protocols that respond effectively to changing network conditions. This research makes a significant contribution to the development of nature-inspired optimization methods that can enhance the performance and resilience of tactical communication systems deployed in high-stakes rescue operations. The findings suggest promising applications for similar bio-inspired algorithms in other mission-critical IoT deployments where energy efficiency and transmission reliability are paramount concerns.

References

[1] Schiller, E., Aidoo, A., Fuhrer, J., Stahl, J., Ziörjen, M., & Stiller, B. (2022). Landscape of IoT security. Computer Science Review, 44, 100467. DOI: 10.1016/j.cosrev.2022.100467

[2] Seyyedabbasi, A., Kiani, F., Allahviranloo, T., Fernandez-Gamiz, U., & Noeiaghdam, S. (2023). Optimal data transmission and pathfinding for WSN and decentralized IoT systems using I-GWO and Ex-GWO algorithms. Alexandria Engineering Journal, 63, 339–357. DOI: 10.1016/j.aej.2022.08.009

[3] Satra, R., Hadi, M. S., Sujito, Febryan, Fattah, M. H., & Busaeri, S. R. (2024). IoAT: Internet of Aquaculture Things for Monitoring Water Temperature in Tiger Shrimp Ponds with DS18B20 Sensors and WeMos D1 R2. Journal of Robotics and Control, 5(1), 62–71. DOI: 10.18196/jrc.v5i1.18470

[4] Aripriharta, W. Z., Hao, M., Muladi, G. J., & Horng, G. J. (2020). A new bio-inspired for cooperative data transmission of IoT. IEEE Access, 8, 161884–161893. DOI: 10.1109/ACCESS.2020.3021507

[5] Sujito, Hadi, R. R., Gumilar, L., Syah, A. I., Falah, M. Z., & Duy, T. H. (2022). Long-term forecasting for growth of electricity load based on customer sectors. Journal of Mechatronics, Electrical Power, and Vehicle Technology, 13(2), 214–221. DOI: 10.14203/j.mev.2022.v13.214-221

[6] Hostage Liberation Operations using Wheeled Robots Based on LIDAR (Light Detection and Ranging) Sensors. MATRIK Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 23(2), 243–258. DOI: 10.30812/matrik.v23i2.3493

[7] Sugiono, B. S. R., Hadi, M. S., Zaeni, I. A. E., Sujito, S., & Irvan, M. (2023). Cloud-Based Realtime Decision System for Severity Classification of COVID-19 Self-Isolation Patients using Machine Learning Algorithm. Ilk. Jurnal Ilmiah, 15(3), 413–4426. DOI: 10.33096/ilkom.v15i3.1945.413-426

[8] Daanoune, I., Abdennaceur, B., & Ballouk, A. (2021). A comprehensive survey on LEACH-based clustering routing protocols in Wireless Sensor Networks. Ad Hoc Networks, 114, 102409. DOI: 10.1016/j.adhoc.2020.102409

[9] Kumar, L. S., Ahmad, S., Routray, S., Prabu, A. V., Alharbi, A., Alouffi, B., & Rajasoundaran, S. (2022). Modern Energy Optimization Approach for Efficient Data Communication in IoT-Based Wireless Sensor Networks. Wireless Communications and Mobile Computing, 2022, 7901587. DOI: 10.1155/2022/7901587

[10] Noh, K. M., Park, J. H., & Park, J. S. (2020). Data transmission direction based routing algorithm for improving network performance of IoT systems. Applied Sciences, 10(11), 3784. DOI: 10.3390/app10113784

[11] Ouldzira, H., Mouhsen, A., Lagraini, H., Chhiba, M., Tabyaoui, A., & Amrane, S. (2019). Remote monitoring of an object using a wireless sensor network based on NODEMCU ESP8266. Indonesian Journal of Electrical Engineering and Computer Science, 16(3), 1154–1162. DOI: 10.11591/ijeecs.v16.i3.pp1154-1162

[12] Jong, G. J., Aripriharta, Hendrick, & Horng, G. J. (2017). A Novel Queen Honey Bee Migration (QHBM) Algorithm for Sink Repositioning in Wireless Sensor Network. Wireless Personal Communications, 95(3), 3209–3232. DOI: 10.1007/s11277-017-3991-z

[13] Peng, S., Zhu, L., Cai, Z., Liu, W., He, C., & Tang, W. (2021). Dynamic Optimization of Government Data Transmission Based on Blockchain Technology. Mobile Information Systems, 2021, 8948323. DOI: 10.1155/2021/8948323

[14] Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., Al-Nemrat, A., & Venkatraman, S. (2019). Deep Learning Approach for Intelligent Intrusion Detection System. IEEE Access, 7, 41525–41550. DOI: 10.1109/ACCESS.2019.2895334

[15] Li, C., Yu, B., Su, Q., & Zhang, H. (2022). Organizational Resource Allocation by Mobile Edge Computing in the Context of the Internet of Things. IEEE Access, 10, 128579–128589. DOI: 10.1109/ACCESS.2022.3228112

[16] Hoang, M. T. O., Grøntved, K. A. R., van Berkel, N., Skov, M. B., Christensen, A. L., & Merritt, T. (2023). Drone Swarms to Support Search and Rescue Operations: Opportunities and Challenges. In Proceedings of the International Conference on Human-Computer Interaction with Mobile Devices and Services, 1, 163-176. Springer International Publishing. DOI: 10.1007/978-3-031-28138-9_11

[17] Bormann, E. G. (1982). A fantasy theme analysis of the television coverage of the hostage rescue and the Reagan inaugural. Quarterly Journal of Speech, 68(2), 133–145. DOI: 10.1080/00335638209383599

[18] Kasiyanto, K., Aripriharta, A., Widiatmoko, D., Irmanto, D., & Bagaskoro, M. C. (2024). Irmanto, S. O. D., Sujito, Aripriharta, Widiatmoko, D., & Kasiyanto. (2024). Optimizing the Personnel Position Monitoring System Using the Global Positioning System in Hostage Release. INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi, 8(1), 91–107. DOI: 10.29407/intensif.v8i1.21665

[19] Kozłowski, C. R., Wojciechowska, A. P., Pękala, K., Chomczyńska, M., Chomczyński, P., Marczak, M., Timler, D., Lipert, A., Ogonowska, A., Rasmus, P., & Kacprzak, A. (2021). Mental and physical health problems as conditions of ex-prisoner re-entry. International Journal of Environmental Research and Public Health, 18(14), 7642. DOI: 10.3390/ijerph18147642

[20] Wirawan, N. T., Defnizal, D., & Ernes, R. N. (2020). Pembuatan Teknologi Robotik Dalam Dunia Militer Sebagai Media Pemantau dan Negosiasi Berbasiskan Artificial Intelligence. JURTEKSI (Jurnal Teknologi dan Sistem Informasi), 6(2), 155–162. DOI: 10.33330/jurteksi.v6i2.538

[21] Du, J., Raza, S. H., Ahmad, M., Alam, I., Dar, S. H., & Habib, M. A. (2022). Digital Forensics as Advanced Ransomware Pre-Attack Detection Algorithm for Endpoint Data Protection. Security and Communication Networks, 2022, 1424638. DOI: 10.1155/2022/1424638

[22] Dewi, P. R. K. (2019). The Use of Multitrack Diplomacy in The Liberation of 10 Indonesian Ship Crew From The Abu Sayyaf Group 2016. Andalas Journal of International Studies, 8(2), 188. DOI: 10.25077/ajis.8.2.188-202.2019

[23] Joshua, J., & Sidik, H. (2021). Diplomasi Yayasan Sukma Dalam Proses Negosiasi Pembebasan Sandera Warga Negara Indonesia Di Filipina Selatan. Padjadjaran Journal of International Relations, 3(1), 1–18. DOI: 10.24198/padjir.v3i1.29254

[24] Mertes, M., Mazei, J., Gemmecke, C., & Hüffmeier, J. (2021). Short-term effects of authority concessions to terrorist hostage-takers: stability and generalizability of the concession effect. Negotiation and Conflict Management Research, 15(2), 124–147. DOI: 10.34891/20211105-533

[25] Jensehaugen, J. (2021). A Palestinian window of opportunity? The PLO, the US and the Iranian hostage crisis. British Journal of Middle East Studies, 48(4), 596–610. DOI: 10.1080/13530194.2019.1661646

[26] Wibowo, K. H., Aripriharta, I., Fadlika, G. J., Horng, S., Wibawanto, & Saputra, F. W. Y. (2019). A New MPPT based on Queen Honey Bee Migration (QHBM) in Stand-alone Photovoltaic. IEEE Xplore, 1, 123–128. DOI: 10.1109/I2CACIS.2019.8825025

[27] Jong, G. J., Wang, Z. H., Hendrick, Hsieh, K. S., & Horng, G. J. (2019). A Novel Adaptive Optimization of Intragrated Network Topology and Transmission Path for IoT System. IEEE Sensors Journal, 19(15), 6454–6459. DOI: 10.1109/JSEN.2019.2908702

[28] Aripriharta, T. W., Bayuanggara, I., Fadlika, S., Sujito, A. N., Afandi, N., Mufti, M., Diantoro, & Horng, G. J. (2023). Comparison of Queen Honey Bee Colony Migration with Various Mppts on Photovoltaic System Under Shaded Conditions. EUREKA: Physics and Engineering, 1(4), 52–62. DOI: 10.21303/2461-4262.2023.002836

[29] Aripriharta, K. H., Wibowo, I., Fadlika, M., Muladi, N., Mufti, M., Diantoro, & Horng, G. J. (2022). The Performance of a New Heuristic Approach for Tracking Maximum Power of PV Systems. Applied Computational Intelligence and Soft Computing, 2022, 1996410. DOI: 10.1155/2022/1996410

[30] Wang, Z. H., Horng, G. J., Hendrick, & Gwo-Jia, J. (2021). A vehicle safety monitoring system based on the Internet of Things and the identification of physiological characteristics. Computers & Electrical Engineering, 89, 106946. DOI: 10.1016/j.compeleceng.2020.106946

[31] Cox, D. (2008). Fundamental limitations on increasing data rate in wireless systems. IEEE Communications Magazine, 46(12), 16–17. DOI: 10.1109/MCOM.2008.4689199

[32] Pyrih, Y. (2024). Search for A Data Transmission Route in A Wireless Sensor Network Using A Genetic Algorithm. Information and Communication Technologies in Electronic Engineering, 4(2), 72–81. DOI: 10.23939/ictee2024.02.072

[33] Usha, M., Mahalingam, T., Ahilan, A., & Sathiamoorthy, J. (2023). EOEEORFP: Eagle Optimized Energy Efficient Optimal Route-Finding Protocol for Secure Data Transmission in FANETs. IETE Journal of Research, 70(5), 4867–4879. DOI: 10.1080/03772063.2023.2253777

[34] Kornilova, A. Y. (2024). The relationship between energy consumption and GDP in countries of the world. Economics of Contemporary Russia, 1(2), 83–100. DOI: 10.33293/1609-1442-2024-2(105)-83-100

[35] Xu, N. (2023). Energy Consumption Forecasting: A Trend Analysis based on Global Data from 2000-2020. In Proceedings of the International Conference on Mathematics and Machine Learning (pp. 146-151). DOI: 10.1145/3653724.3653750

[36] Lee, S. B., Kwon, J. H., & Kim, E. J. (2021). Residual Energy Estimation-Based MAC Protocol for Wireless Powered Sensor Networks. Sensors, 21(22), 7617. DOI: 10.3390/s21227617

[37] Medina, C. A. G., Angeles, M. E. R., & Flores, I. Y. O. (2016). Residual Energy-Based Strategies for the Transmission Probability and Duty-Cycle Selection in Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 12(5), 6239020. DOI: 10.1155/2016/6239020

[38] Vaidya, C. (2018). Statistical Approach for Load Distribution in Decentralized Cloud Computing. Helix, 8(5), 3884–3887. DOI: 10.29042/2018-3884-3887

[39] Khalil, M. I. K., Ahmad, I., & Almazroi, A. A. (2019). Energy Efficient Indivisible Workload Distribution in Geographically Distributed Data Centers. IEEE Access, 7, 82672–82680. DOI: 10.1109/ACCESS.2019.2924085

[40] Chang, J., Ryu, J. H., & Lee, C. S. (2024). Interfering Signal Transmission Using Multi-Frequency Beamforming. IEEE Xplore, 1, 1–6. DOI: 10.1109/SAS60918.2024.10636385

[41] Xiao, N., & Song, Z. (2022). Signal Interference Detection Algorithm Based on Bidirectional Long Short-Term Memory Neural Network. Mathematical Problems in Engineering, 2022, 1–7. DOI: 10.1155/2022/4554374

[42] Raslan, A. F., Ali, A. F., & Darwish, A. (2020). Swarm intelligence algorithms and their applications in Internet of Things. In Swarm Intelligence for Resource Management in Internet of Things, 1, 1-19. DOI: 10.1016/B978-0-12-818287-1.00003-6

Downloads

Published

2025-07-09

How to Cite

Kasiyanto, Aripriharta, & Sujito. (2025). Optimizing IoT Data Transmission with the Queen Honey Bee Migration Method for Operational Efficiency of the Hostage Rescue Team. International Journal of Computational and Experimental Science and Engineering, 11(3). https://doi.org/10.22399/ijcesen.3280

Issue

Section

Research Article