Exploring the Potential of Vacancy-Ordered Cs2PtI6 Perovskite as a Lead-Free Absorber for Next-Generation Solar Cells via Modeling and Simulation

Authors

  • Hayat Arbouz University Saad Dahlab Blida1

DOI:

https://doi.org/10.22399/ijcesen.3281

Keywords:

Photovoltaic (PV), Solar cell, Perovskite, Simulation, Lead-Free

Abstract

This study explores the potential of the vacancy-ordered perovskite material Cs2PtI6, which is inorganic and lead-free, as an absorber layer in a single-junction solar cell. The research is based on modeling, simulation, and subsequent optimization of the cell structure to achieve optimal conversion efficiency. A baseline structure FTO/TiO2/Cs2PtI6/Spiro-OMeTAD/Au was designed as the starting point for simulations. The effects of various physical factors on key photovoltaic parameters were evaluated, including the thicknesses of the absorber, electron transport layer (ETL), and hole transport layer (HTL), as well as the defect density within the Cs2PtI6 material and at its interfaces with the ETL and HTL. For this purpose, a mathematical model was established to investigate the combined effects of parameters, supported by contour plot analysis. Moreover, alternative materials for the ETL and HTL, featuring different physical properties and band alignments compared to those in the baseline structure, were investigated. The study also examined how the height of the energy barrier at the rear interface between the HTL and the metal layer influences device performance. Based on these findings, an optimized structure FTO/CeO2/Cs2PtI6/Cu2O/Carbon was developed. This configuration achieved a conversion efficiency of 18.54%, demonstrating its superiority over the baseline design and other comparable solar cell architectures. Overall, this work highlights the promising potential of vacancy-ordered Cs2PtI6 perovskite and contributes to the advancement of next-generation solar cell technologies.

References

[1]Qusay Hassan, Sameer Algburi, Aws Zuhair Sameen, Tariq J. Al-Musawi, Ali Khudhair Al-Jiboory, Hayder M. Salman, Bashar Mahmood Ali, Marek Jaszczur,"A comprehensive review of international renewable energy growth,Energy and Built Environment",2024,ISSN 2666-1233, https://doi.org/10.1016/j.enbenv.2023.12.002.

[2]Mohsin Afroz, Ratneshwar Kumar Ratnesh, Swapnil Srivastava, Jay Singh, "Perovskite solar cells: Progress, challenges, and future avenues to clean energy", Solar Energy, Volume 287, 2025, 113205,ISSN 0038-092X, https://doi.org/10.1016/j.solener.2024.113205.

[3]Xiao Jia, Dan Yang, Dexu Zheng, Zhen Chang, Jishuang Liu, Lu Liu, Lei Peng, Yao Tong, Kai Wang, Shengzhong Liu," The progress and challenges of tin-lead alloyed perovskites: Toward the development of large-scale all-perovskite tandem solar cells ", Chem, Volume 11, Issue 1, 2025, 102384, ISSN 2451-9294, https://doi.org/10.1016/j.chempr.2024.12.002.

[4]D. Weber, "CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur/CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure", Z. Naturforsch. B Chem. Sci. 33 (12) (Dec. 1978) 1443–1445

[5]Tayari, F.; Teixeira, S.S.; Graca, M.P.F.; Nassar, K.I. A Comprehensive Review of Recent Advances in Perovskite Materials: Electrical, Dielectric, and Magnetic Properties. Inorganics 2025, 13, 67. https://doi.org/10.3390/inorganics13030067

[6]Asir Eliet Magdalin, Peter Daniel Nixon, Elangovan Jayaseelan, Murugesan Sivakumar, Suresh Kumar Narmadha Devi, M.S.P. Subathra, Nallapaneni Manoj Kumar, Nallamuthu Ananthi,"Development of lead-free perovskite solar cells: Opportunities, challenges, and future technologies ", Results in Engineering, Volume 20, 2023, 101438, ISSN 2590-1230, https://doi.org/10.1016/j.rineng.2023.101438.

[7]Torrence CE, Libby CS, Nie W, Stein JS. Environmental and health risks of perovskite solar modules: Case for better test standards and risk mitigation solutions. iScience. 2022 Dec 15;26(1):105807. doi: 10.1016/j.isci.2022.105807. PMID: 36691614; PMCID: PMC9860350.

[8]Yang, C., Hu, W., Liu, J. et al. Achievements, challenges, and future prospects for industrialization of perovskite solar cells. Light Sci Appl 13, 227 (2024). https://doi.org/10.1038/s41377-024-01461-x

[9]Aarif Ul Islam Shah, Edson Leroy Meyer, "Perovskite-based solar cells in photovoltaics for commercial scalability: Current progress, challenges, mitigations and future prospectus", Solar Energy, Volume 286, 2025, 113172, ISSN 0038-092X, https://doi.org/10.1016/j.solener.2024.113172.

[10] Arbouz, H. (2024). Investigation of Epitaxial Misfit Strain Influence at the CsSn(I1-xBrx)3/SnO2 Interface on Photovoltaic Parameters in Cu2O/CsSn(I1-xBrx)3/SnO2 Perovskite Solar Cells . International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.367

[11] Arbouz, H. (2024). Optimization study of single junction structures utilizing 1.12 ev Cs2AuBiCl6 double perovskite: a lead-free inorganic absorber for single and tandem solar cell applications. Key Engineering Materials, 1003, 43-53. https://doi.org/10.4028/p-iiir9

[12]Ghorui, S., Kangsabanik, J., Aslam, M., & Alam, A. (2024). Optoelectronic and transport properties of vacancy-ordered double-perovskite halides: A first-principles study. Physical Review Applied, 21(2), Article 024036. https://doi.org/10.1103/PhysRevApplied.21.024036

[13]Ruby Jindal, Archana Tripathi, Chandra Mohan, Alka Garg, Rajender S. Varma, "Lead-free halide double perovskites for sustainable environmental applications", Chemical Physics Impact, Volume 9, 2024, 100770, ISSN 2667-0224, https://doi.org/10.1016/j.chphi.2024.100770.

[14]Ye, Xinyu & Liu, Anmin & Gao, Liguo & Zhang, Chu & Lijing, Yan & Wen, Shizheng & Ma, Tingli. (2022). Computational screening of Cs based vacancy‐ordered double perovskites for solar cell and photocatalysis applications. EcoMat. 5. 10.1002/eom2.12295.

[15]Zhao, Yinchang & Zeng, Shuming & Li, Geng & Lian, Chao & Dai, Zhenhong & Meng, Sheng & Ni, Jun. (2021). Lattice thermal conductivity including phonon frequency shifts and scattering rates induced by quartic anharmonicity in cubic oxide and fluoride perovskites. Physical Review B. 104. 224304. 10.1103/PhysRevB.104.224304.

[16]AbdElAziz HH, Taha M, El Rouby WMA, Khedr MH, Saad L. Evaluating the performance of Cs2PtI6-xBrx for photovoltaic and photocatalytic applications using first-principles study and SCAPS-1D simulation. Heliyon. 2022 Sep 28;8(10):e10808.doi:10.1016/j.heliyon.2022.e10808. PMID: 36203894; PMCID: PMC9530494.

[17]Schwartz, Dakota & Murshed, Rubaiya & Larson, Harry & Usprung, Benedikt & Soltanmohamad, Sina & Pandey, Ramesh & Barnard, Edward & Rockett, Angus & Hartmann, Thomas & Castelli, Ivano & Bansal, Shubhra. (2020). Air Stable, High Efficiency, Pt-Based Halide Perovskite Solar Cells with Long Carrier Lifetimes. physica status solidi (RRL) - Rapid Research Letters. 14. 10.1002/pssr.202000182.

[18]Diwen Liu, Caihua Zhang, Rongjian Sa,The fundamental physical properties of Cs2PtI6 and (CH3NH3)2PtI6,Physica B: Condensed Matter, Volume 644, 2022, 414235, https://doi.org/10.1016/j.physb.2022.414235.

[19]Amjad A, Qamar S, Zhao C, Fatima K, Sultan M, Akhter Z. Numerical simulation of lead-free vacancy ordered Cs2PtI6 based perovskite solar cell using SCAPS-1D. RSC Adv. 2023 Aug 1;13(33):23211-23222. doi: 10.1039/d3ra04176j. PMID: 37533780; PMCID: PMC10392039.

[20]Faizan, M., Bhamu, K.C., Murtaza, G. et al. Electronic and optical properties of vacancy ordered double perovskites A2BX6 (A = Rb, Cs; B = Sn, Pd, Pt; and X = Cl, Br, I): a first principles study. Sci Rep 11, 6965 (2021). https://doi.org/10.1038/s41598-021-86145-x

[21]Murugan, S.; Lee, E.-C. Recent Advances in the Synthesis and Application of Vacancy-Ordered Halide Double Perovskite Materials for Solar Cells: A Promising Alternative to Lead-Based Perovskites. Materials 2023, 16, 5275. https://doi.org/10.3390/ ma16155275

[22]Rehman, U.u., Almousa, N., Sahar, K.u., Ashfaq, A., Mahmood, K., Shokralla, E.A., Al-Buriahi, M.S., Alrowaili, Z.A., Capangpangan, R.Y. and Alguno, A.C. (2023), Optimizing the Efficiency of Lead-Free Cs2TiI6-Based Double Halide Perovskite Solar Cells Using SCAPS-1D. Energy Technol., 11: 2300459. https://doi.org/10.1002/ente.202300459

[23]Moiz, S. A., Alahmadi, A. N. M., & Aljohani, A. J. (2021). Design of a Novel Lead-Free Perovskite Solar Cell for 17.83% Efficiency. IEEE Access, 9, 54254–54263. doi:10.1109/access.2021.3070112

[24]M. Khalid Hossain, Apon Kumar Datta, Osamah Alsalman, M. Shihab Uddin, Gazi F.I. Toki, Moustafa A. Darwish, M.R. Mohammad, D.K. Dwivedi, Rajesh Haldhar, Sergei V. Trukhanov,"An extensive study on charge transport layers to design and optimization of high-efficiency lead-free Cs2PtI6-based double-perovskite solar cells: A numerical simulation approach", Results in Physics, Volume 61, 2024, 107751,ISSN 2211-3797, https://doi.org/10.1016/j.rinp.2024.107751.

[25]S. T. Jayawardane, M. D. Akmal, Y. H. Jayaneththi, T. V. Fernando, D. Hu, P. K. W. Abeygunawardhana, G. A. Sewvandi, Simulation-Based Performance Analysis of Lead-Free Bismuth Perovskite Solar Cells: A Comparative Study of Cs3Bi2I9 and (CH3NH3)3Bi2I9 -based Perovskite Solar Cells. Adv. Theory Simul. 2024, 7, 2400206. https://doi.org/10.1002/adts.202400206

[26]Shivesh K, Alam I, Kushwaha AK, Kumar M, Singh SV. Investigating the theoretical performance of Cs2TiBr6-based perovskite solar cell with La-doped BaSnO3 and CuSbS2 as the charge transport layers. Int J Energy Res. 2022; 46(5): 6045-6064. https://doi.org/10.1002/er.7546

[27]Aliani, C., Krichen, M. & Zouari, A. Effect of the front-metal work function on the performance of a-Si:H(n+)/a-Si:H(i)/c-Si(p) heterojunction solar cells. J Comput Electron 18, 576–583 (2019). https://doi.org/10.1007/s10825-019-01324-4

[28]M. Courel, J. A. Andrade-Arvizu, O. Vigil-Galán, “The role of buffer/kesterite interface recombination and minority carrier lifetime on kesterite thin film solar cells,” Mater. Res. Express, vol. 3. 9, 2013, 095501. DOI 10.1088/2053-1591/3/9/095501

[29]Md. Ariful Islam Bhuiyan, Md. Shamim Reza, Avijit Ghosh, Hmoud Al-Dmour, Yedluri Anil Kumar, Muhammad Ihsan Ibn Rahim, Md. Aktarujjaman, Fahima Yeasmin, Hamad Al-Lohedan, R. Jothi Ramalingam, Md. Selim Reza,"Optimized RbPbI3-Based perovskite solar cells with SnS2 ETL and MoO3 HTL achieving simulated PCE of 32.72%," Optics Communications, Volume 583, 2025, 131761, ISSN 0030-4018, https://doi.org/10.1016/j.optcom.2025.131761.

[30]Z. Guo, M. Yuan, G. Chen, F. Liu, R. Lu, W.-J. Yin, Understanding Defects in Perovskite Solar Cells through Computation: Current Knowledge and Future Challenge. Adv. Sci. 2024, 11, 2305799. https://doi.org/10.1002/advs.202305799.

[31]Gamal, K., Gamal, M., Okaz, A. et al. Comprehensive performance analysis of perovskite solar cells based on different crystalline structures of MAPbI3. Opt Quant Electron 56, 827 (2024). https://doi.org/10.1007/s11082-024-06655-6

[32]Y. Yao, C. Cheng, C. Zhang, H. Hu, K. Wang, S. De Wolf, Organic Hole-Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells. Adv. Mater. 2022, 34, 2203794. https://doi.org/10.1002/adma.202203794

[33]Jadel Tsiba Matondo, Davy Malouangou Maurice, Qin Chen, Luyun Bai, Mina Guli, "Inorganic copper-based hole transport materials for perovskite photovoltaics: Challenges in normally structured cells, advances in photovoltaic performance and device stability," Solar Energy Materials and Solar Cells, Volume 224, 2021, 111011, ISSN 0927-0248, https://doi.org/10.1016/j.solmat.2021.111011.

[34]Fan Zhang, Wenjing Hou, Helin Wang, Jun Song, "Improving the performance and stability of inverted perovskite solar cell modules by cathode interface engineering," Chemical Engineering Journal, Volume 490, 2024, 151805, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2024.151805.

[35]Yin, Y., Fu, S., Zhou, S. et al. Efficient and Stable Ideal Bandgap Perovskite Solar Cell Achieved by a Small Amount of Tin Substituted Methylammonium Lead Iodide. Electron. Mater. Lett. 16, 224–230 (2020). https://doi.org/10.1007/s13391-020-00206-3

[36]Hu, M., Chen, M., Guo, P. et al. Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability. Nat Commun 11, 151 (2020). https://doi.org/10.1038/s41467-019-13908-6

[37]Wenxiao Zhang, Xiaodong Li, Sheng Fu, Xiaoyan Zhao, Xiuxiu Feng, Junfeng Fang," Lead-lean and MA-free perovskite solar cells with an efficiency over 20%," Joule, Volume 5, Issue 11, 2021, Pages 2904-2914, ISSN 2542-4351, https://doi.org/10.1016/j.joule.2021.09.008.

Downloads

Published

2025-10-03

How to Cite

Arbouz, H. (2025). Exploring the Potential of Vacancy-Ordered Cs2PtI6 Perovskite as a Lead-Free Absorber for Next-Generation Solar Cells via Modeling and Simulation. International Journal of Computational and Experimental Science and Engineering, 11(4). https://doi.org/10.22399/ijcesen.3281

Issue

Section

Research Article