Investigation of Epitaxial Misfit Strain Influence at the CsSn(I1-xBrx)3/SnO2 Interface on Photovoltaic Parameters in Cu2O/CsSn(I1-xBrx)3/SnO2 Perovskite Solar Cells
DOI:
https://doi.org/10.22399/ijcesen.367Keywords:
Perovskte, solar cell, strain, Photovoltaic, EfficiencyAbstract
This work involves the numerical simulation of the photovoltaic performance of a single perovskite solar cell based on the Cu2O/CsSn(I1-xBrx)3/SnO2 structure, utilizing a lead-free inorganic perovskite absorber layer CsSn(I1-xBrx)3 with variable bromine content represented by the ratio x. The study aims to evaluate performance fluctuations due to misfit deformation effects at the interface between the SnO2 electron transport layer (ETL) and the absorber on photovoltaic parameters. The simulation model incorporates variations in the physical parameters of the device layers dependent on the ratio x. This enables the calculation of bandgap energy fluctuations according to strain theory and assesses the resultant impact on photovoltaic parameters due to strain at the SnO2/CsSn(I1-xBrx)3 interface. Performance results are presented as a function of bromine composition x, considering both the presence and absence of deformation effects. The study clearly demonstrates the significant impact of misfit deformation on bandgap energy fluctuation, emphasizing the need to optimize bromine content to balance deformation effects and achieve optimal performance. Specifically, the results show a maximum efficiency of 19.72% at x=0.56 for the undeformed structure, and 19.30% at x=0.50 for the deformed structure. This study refines simulation results and underscores the critical role of deformation engineering in modulating energy gaps.
References
Dada, M., & Popoola, P. (2023). Recent advances in solar photovoltaic materials and systems for energy storage applications: A review. Beni-Suef University Journal of Basic and Applied Sciences, 12(1), 66. https://doi.org/10.1186/s43088-023-00405-5
Arbouz, H. (2022). Modeling of a tandem solar cell structure based on CZTS and CZTSe absorber materials. International Journal of Computational and Experimental Science and Engineering, 8(1), 14-18. https://doi.org/10.22399/ijcesen.843038
Gressler, S., Part, F., Scherhaufer, S., Obersteiner, G., & Huber-Humer, M. (2022). Advanced materials for emerging photovoltaic systems – Environmental hotspots in the production and end-of-life phase of organic, dye-sensitized, perovskite, and quantum dots solar cells. Sustainable Materials and Technologies, 34, e00501. https://doi.org/10.1016/j.susmat.2022.e00501
Fouladi Targhi, F., Seyed Jalili, Y., & Kanjouri, F. (2018). MAPbI3 and FAPbI3 perovskites as solar cells: Case study on structural, electrical, and optical properties. Results in Physics, 10, 616-627. https://doi.org/10.1016/j.rinp.2018.07.007
Costa, C., Manceau, M., Duzellier, S., Nuns, T., & Cariou, R. (2023). Perovskite solar cells under protons irradiation: From in-situ IV-monitoring to root cause degradation elucidation. Solar Energy Materials and Solar Cells, 257, 112388. https://doi.org/10.1016/j.solmat.2023.112388
Feng, J., Wang, X., Li, J., Zhang, X., & Zhao, L. (2023). Resonant perovskite solar cells with extended band edge. Nature Communications, 14(1), 5392. https://doi.org/10.1038/s41467-023-41149-1
Arbouz, H. (2023). Optimization of lead-free CsSnI3-based perovskite solar cell structure. Applied Rheology, 33(1), 20220138. https://doi.org/10.1515/arh-2022-0138
Arbouz, H. (2022). Simulation and optimization of a lead-free CS2TiBr6 perovskite solar cell structure. In Proceedings of International Conference on Electrical Computer Communications and Mechatronics Engineering (pp. 1-6). IEEE.
Arbouz, H. (2023). Towards efficient tandem solar cells based on lead-free and inorganic perovskite absorbers. Thermal Science and Engineering, 6(1), 34. https://doi.org/10.24294/tse.v6i1.2000
Arbouz, H. (2023). Simulation and optimization of a solar cell based on the double perovskite absorber material Cs2BiAgI6. In Proceedings of the 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) (pp. 1-6). IEEE. https://doi.org/10.1109/ICECCME57830.2023.10252226
Bin, W.-M., Huang, W.-H., Lin, W.-C., & Lee, H. (2021). Study on optical and electrical properties of thermally evaporated tin oxide thin films for perovskite solar cells. Crystals, 11(11), 1380. https://doi.org/10.3390/cryst11111380
Katariya, A., Mahapatra, B., Patel, P., & Rani, J. (2021). Optimization of ETM and HTM layer on NFA based BHJ-organic solar cell for high efficiency performance. Optik, 245, 167717. https://doi.org/10.1016/j.ijleo.2021.167717
Arbouz, H. (2023). Simulation study of single solar cell structures based on the compositionally variable perovskite material CsSn(I1-xBrx)3 for tandem configured solar cells. Journal of Engineering Research. https://doi.org/10.1016/j.jer.2023.09.030
Ghosh, R., Singh, A., & Agarwal, P. (2023). Study on the effect of different HTL and ETL materials on the perovskite solar cell performance with TCAD simulator. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.06.161
Rawa, M., Al-Turki, Y., Sindi, H., Ćalasan, M., Ali, Z. M., & Abdel Aleem, S. H. E. (2023). Current-voltage curves of planar heterojunction perovskite solar cells – Novel expressions based on Lambert W function and Special Trans Function Theory. Journal of Advanced Research, 44, 91-108. https://doi.org/10.1016/j.jare.2022.03.017
Courel, M., Andrade-Arvizu, J. A., & Vigil-Galán, O. (2014). Towards a CdS/Cu2ZnSnS4 solar cell efficiency improvement: A theoretical approach. Applied Physics Letters, 105(23), 233501. https://doi.org/10.1063/1.4903826
Ghobadi, A., Yousefi, M., Minbashi, M., Ahmadkhan Kordbacheh, A. H., Haji Abdolvahab, A. R., & Gorji, N. E. (2020). Simulating the effect of adding BSF layers on Cu2BaSnSSe3 thin film solar cells. Optical Materials, 107, 109927. https://doi.org/10.1016/j.optmat.2020.109927
Zhang, P., Song, Y., Tian, J., Zhang, X., & Zhang, Z. (2009). Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers. Journal of Applied Physics, 105(5), 053103. https://doi.org/10.1063/1.3081558
Van de Walle, C. G. (1989). Band lineups and deformation potentials in the model-solid theory. Physical Review B: Condensed Matter, 39(3), 1871-1883. https://doi.org/10.1103/PhysRevB.39.1871
Hossain, M. K., Toki, G. F. I., Kuddus, A., Uddin, M. S., & Islam, M. R. (2023). An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells. Scientific Reports, 13(1), 2521. https://doi.org/10.1038/s41598-023-28506-2
Sidra, K., Yadav, S., Chakraborty, V., Singh, J., & Singh, R. (2023). A simulation study of all inorganic lead-free CsSnBr3 tin halide perovskite solar cell. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.04.167
Hossain, M. K., Uddin, M. S., Toki, G. F. I., Mohammed, M. K. A., Pandey, R., Madan, J., Rahman, M. F., Islam, M. R., Bhattarai, S., Bencherif, H., Samajdar, D. P., Amami, M., & Dwivedi, D. K. (2023). Achieving above 24% efficiency with non-toxic CsSnI3 perovskite solar cells by harnessing the potential of the absorber and charge transport layers. RSC Advances, 13(34), 23514-23537. https://doi.org/10.1039/d3ra02910g
Zhu, C., Niu, X., Fu, Y., Wang, Q., & Zhang, H. (2019). Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nature Communications, 10(1), 815. https://doi.org/10.1038/s41467-019-08507-4
Ahmed, A., Riaz, K., Mehmood, H., Tauqeer, T., & Ahmad, Z. (2020). Performance optimization of CH3NH3Pb(I1-xBrx)3 based perovskite solar cells by comparing different ETL materials through conduction band offset engineering. Optical Materials, 105, 109897. https://doi.org/10.1016/j.optmat.2020.109897
Wang, L., Yang, S., Xi, T., Yang, Q., Yi, J., Li, H., & Zhong, J. (2023). Performance optimization of CsPb(I1–xBrx)3 inorganic perovskite solar cells with gradient bandgap. Energies, 16(10), 4135. https://doi.org/10.3390/en16104135
Demirhan, Y. (2024). Multi-Layer Absorber based on Plasmonic Resonances for Photovoltaic Applications at Visible Spectra. International Journal of Computational and Experimental Science and Engineering, 10(4);1712-1718. https://doi.org/10.22399/ijcesen.778
Polatoglu, A. (2024). Observation of the Long-Term Relationship Between Cosmic Rays and Solar Activity Parameters and Analysis of Cosmic Ray Data with Machine Learning. International Journal of Computational and Experimental Science and Engineering, 10(2);189-199. https://doi.org/10.22399/ijcesen.324
ABDELBAKI , C., & REBIHA , L. (2015). Modeling of silicon solar cells performances by MATLAB. International Journal of Computational and Experimental Science and Engineering, 1(1), 11–15. Retrieved from https://www.ijcesen.com/index.php/ijcesen/article/view/12
Arbouz, H. (2024). Study of an Efficient and Environmentally Friendly Germanium-Based CsGeI3 Perovskite Structure For Single and Double Solar Cells . International Journal of Computational and Experimental Science and Engineering, 10(1);33-41. https://doi.org/10.22399/ijcesen.250
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.